diff source_library/mlmm1.r @ 1:380b364980f9 draft default tip

planemo upload commit 475f4d7d8442a0d75e103af326ae5881c4d2a4ac
author dereeper
date Mon, 16 Apr 2018 08:50:05 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/source_library/mlmm1.r	Mon Apr 16 08:50:05 2018 -0400
@@ -0,0 +1,486 @@
+##############################################################################################################################################
+###MLMM - Multi-Locus Mixed Model
+###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH
+#######
+#
+##note: require EMMA
+#library(emma)
+#source('emma.r')
+#
+##REQUIRED DATA & FORMAT
+#
+#PHENOTYPE - Y: a vector of length m, with names(Y)=individual names
+#GENOTYPE - X: a n by m matrix, where n=number of individuals, m=n umber of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
+#KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names
+#each of these data being sorted in the same way, according to the individual name
+#
+##FOR PLOTING THE GWAS RESULTS
+#SNP INFORMATION - snp_info: a data frame having at least 3 columns:
+# - 1 named 'SNP', with SNP names (same as colnames(X)),
+# - 1 named 'Chr', with the chromosome number to which belong each SNP
+# - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to.
+#######
+#
+##FUNCTIONS USE
+#save this file somewhere on your computer and source it!
+#source('path/mlmm.r')
+#
+###FORWARD + BACKWARD ANALYSES
+#mygwas<-mlmm(Y,X,K,nbchunks,maxsteps)
+#X,Y,K as described above
+#nbchunks: an integer defining the number of chunks of to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
+#maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0,
+#			however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used.
+#			It's value must be specified as an integer >= 3
+#
+###RESULTS
+#
+##STEPWISE TABLE
+#mygwas$step_table
+#
+##PLOTS
+#
+##PLOTS FORM THE FORWARD TABLE
+#plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC'))
+#
+##RSS PLOT
+#plot_step_RSS(mygwas)
+#
+##GWAS MANHATTAN PLOTS
+#
+#FORWARD STEPS
+#plot_fwd_GWAS(mygwas,step,snp_info,pval_filt)
+#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
+#snp_info as described above
+#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
+#
+#OPTIMAL MODELS
+#Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria
+#
+#plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt)
+#snp_info as described above
+#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
+#
+##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST
+#plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2)
+#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
+#snp_info as described above
+#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
+#chrom is an integer specifying the chromosome on which the region of interest is
+#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
+#
+#plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2)
+#snp_info as described above
+#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
+#chrom is an integer specifying the chromosome on which the region of interest is
+#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
+#
+##QQPLOTS of pvalues
+#qqplot_fwd_GWAS(mygwas,nsteps)
+#nsteps=maximum number of forward steps to be displayed
+#
+#qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'))
+#
+##############################################################################################################################################
+
+mlmm<-function(Y,X,K,nbchunks,maxsteps) {
+
+n<-length(Y)
+m<-ncol(X)
+
+stopifnot(ncol(K) == n)
+stopifnot(nrow(K) == n)
+stopifnot(nrow(X) == n)
+stopifnot(nbchunks >= 2)
+stopifnot(maxsteps >= 3)
+
+#INTERCEPT
+
+Xo<-rep(1,n)
+
+#K MATRIX NORMALISATION
+
+K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K
+rm(K)
+
+#step 0 : NULL MODEL
+cof_fwd<-list()
+cof_fwd[[1]]<-as.matrix(Xo)
+colnames(cof_fwd[[1]])<-'Xo'
+
+mod_fwd<-list()
+mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm)
+
+herit_fwd<-list()
+herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve)
+
+RSSf<-list()
+RSSf[[1]]<-'NA'
+
+RSS_H0<-list()
+RSS_H0[[1]]<-'NA'
+
+df1<-1
+df2<-list()
+df2[[1]]<-'NA'
+
+Ftest<-list()
+Ftest[[1]]<-'NA'
+
+pval<-list()
+pval[[1]]<-'NA'
+
+fwd_lm<-list()
+
+cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n')
+
+#step 1 : EMMAX
+
+M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n)))
+Y_t<-crossprod(M,Y)
+cof_fwd_t<-crossprod(M,cof_fwd[[1]])
+fwd_lm[[1]]<-summary(lm(Y_t~0+cof_fwd_t))
+Res_H0<-fwd_lm[[1]]$residuals
+Q_<-qr.Q(qr(cof_fwd_t))
+
+RSS<-list()
+for (j in 1:(nbchunks-1)) {
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
+RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t)}
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))])
+RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t,j)
+
+RSSf[[2]]<-unlist(RSS)
+RSS_H0[[2]]<-sum(Res_H0^2)
+df2[[2]]<-n-df1-ncol(cof_fwd[[1]])
+Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1
+pval[[2]]<-pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE)
+
+cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])])
+colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1]))
+mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm)
+herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve)
+rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
+
+cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n')
+
+#FORWARD
+
+for (i in 3:(maxsteps)) {
+if (herit_fwd[[i-2]] < 0.01) break else {
+
+M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n)))
+Y_t<-crossprod(M,Y)
+cof_fwd_t<-crossprod(M,cof_fwd[[i-1]])
+fwd_lm[[i-1]]<-summary(lm(Y_t~0+cof_fwd_t))
+Res_H0<-fwd_lm[[i-1]]$residuals
+Q_ <- qr.Q(qr(cof_fwd_t))
+
+RSS<-list()
+for (j in 1:(nbchunks-1)) {
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
+RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t)}
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))])
+RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t,j)
+
+RSSf[[i]]<-unlist(RSS)
+RSS_H0[[i]]<-sum(Res_H0^2)
+df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]])
+Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1
+pval[[i]]<-pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE)
+
+cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])])
+colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1]))
+mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm)
+herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve)
+rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)}
+cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')}
+rm(i)
+
+##gls at last forward step
+M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n)))
+Y_t<-crossprod(M,Y)
+cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]])
+fwd_lm[[length(mod_fwd)]]<-summary(lm(Y_t~0+cof_fwd_t))
+
+Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals
+Q_ <- qr.Q(qr(cof_fwd_t))
+
+RSS<-list()
+for (j in 1:(nbchunks-1)) {
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
+RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t)}
+X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))])
+RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+rm(X_t,j)
+
+RSSf[[length(mod_fwd)+1]]<-unlist(RSS)
+RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2)
+df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]])
+Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1
+pval[[length(mod_fwd)+1]]<-pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE)
+rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
+
+##get max pval at each forward step
+max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm))
+max_pval_fwd[1]<-0
+for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])}
+rm(i)
+
+##get the number of parameters & Loglikelihood from ML at each step
+mod_fwd_LL<-list()
+mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML)
+for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)}
+rm(i)
+
+cat('backward analysis','\n')
+
+##BACKWARD (1st step == last fwd step)
+
+dropcof_bwd<-list()
+cof_bwd<-list()
+mod_bwd <- list()
+bwd_lm<-list()
+herit_bwd<-list()
+
+dropcof_bwd[[1]]<-'NA'
+cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]])
+colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]
+mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm)
+herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve)
+M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n)))
+Y_t<-crossprod(M,Y)
+cof_bwd_t<-crossprod(M,cof_bwd[[1]])
+bwd_lm[[1]]<-summary(lm(Y_t~0+cof_bwd_t))
+
+rm(M,Y_t,cof_bwd_t)
+
+for (i in 2:length(mod_fwd)) {
+dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))]
+cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]])
+colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]
+mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm)
+herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve)
+M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n)))
+Y_t<-crossprod(M,Y)
+cof_bwd_t<-crossprod(M,cof_bwd[[i]])
+bwd_lm[[i]]<-summary(lm(Y_t~0+cof_bwd_t))
+rm(M,Y_t,cof_bwd_t)}
+
+rm(i)
+
+##get max pval at each backward step
+max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm))
+for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])}
+max_pval_bwd[length(bwd_lm)]<-0
+
+##get the number of parameters & Loglikelihood from ML at each step
+mod_bwd_LL<-list()
+mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML)
+for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)}
+rm(i)
+
+cat('creating output','\n')
+
+##Forward Table: Fwd + Bwd Tables
+#Compute parameters for model criteria
+BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)}
+extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)}
+
+fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]]
+	,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]]))
+for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table,
+	data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]]
+	,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))}
+
+rm(i)
+
+bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]]
+	,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]]))
+for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table,
+	data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]]
+	,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))}
+
+rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd)
+
+fwdbwd_table<-rbind(fwd_table,bwd_table)
+
+#RSS for plot
+mod_fwd_RSS<-vector()
+mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2)
+for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)}
+mod_bwd_RSS<-vector()
+mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2)
+for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)}
+expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]}))
+h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS)
+unexpl_RSS<-1-expl_RSS-h2_RSS
+plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum))
+
+#GLS pvals at each step
+pval_step<-list()
+pval_step[[1]]<-list(out=data.frame('SNP'=colnames(X),'pval'=pval[[2]]),cof='')
+for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]),
+	data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),cof=colnames(cof_fwd[[i]])[-1])}
+
+#GLS pvals for best models according to extBIC and mbonf
+
+opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],]
+opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],]
+bestmodel_pvals<-function(model) {if(substr(model$step_,start=0,stop=3)=='fwd') {
+		pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') {
+		cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]]
+		mixedmod<-emma.REMLE(Y,cof,K_norm)
+		M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n)))
+		Y_t<-crossprod(M,Y)
+		cof_t<-crossprod(M,cof)
+		GLS_lm<-summary(lm(Y_t~0+cof_t))
+		Res_H0<-GLS_lm$residuals
+		Q_ <- qr.Q(qr(cof_t))
+		RSS<-list()
+		for (j in 1:(nbchunks-1)) {
+		X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
+		RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+		rm(X_t)}
+		X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))])
+		RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
+		rm(X_t,j)
+		RSSf<-unlist(RSS)
+		RSS_H0<-sum(Res_H0^2)
+		df2<-n-df1-ncol(cof)
+		Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1
+		pval<-pf(Ftest,df1,df2,lower.tail=FALSE)
+		list(out=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]),
+		data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),cof=colnames(cof)[-1])} else {cat('error \n')}}
+opt_extBIC_out<-bestmodel_pvals(opt_extBIC)
+opt_mbonf_out<-bestmodel_pvals(opt_mbonf)
+
+list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)}
+
+plot_step_table<-function(x,type){
+	if (type=='h2') {plot(x$step_table$step,x$step_table$h2,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='h2')
+	abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
+    else if (type=='maxpval'){plot(x$step_table$step,-log10(x$step_table$maxpval),type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='-log10(max_Pval)')
+	abline(h=x$bonf_thresh,lty=2)
+	abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
+    else if (type=='BIC'){plot(x$step_table$step,x$step_table$BIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='BIC')
+	abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
+    else if (type=='extBIC'){plot(x$step_table$step,x$step_table$extBIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='EBIC')
+	abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
+	else {cat('error! \n argument type must be one of h2, maxpval, BIC, extBIC')}}
+
+plot_step_RSS<-function(x){
+	op<-par(mar=c(5, 5, 2, 2))
+	plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0)
+	polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='brown1', border=0)
+	polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='forestgreen', border=0)
+	polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='dodgerblue4', border=0)
+	abline(v=(nrow(x$step_table)/2-0.5),lty=2)
+	par(op)}
+
+plot_GWAS<-function(x) {
+	output_<-x$out[order(x$out$Pos),]
+	output_ok<-output_[order(output_$Chr),]
+	
+	maxpos<-c(0,cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200)))
+	plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2))
+#	plot_col<-c('blue','darkgreen','red','cyan','purple')
+	size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x
+	a<-rep(maxpos[1],size[1])
+	b<-rep(plot_col[1],size[1])
+		for (i in 2:max(unique(output_ok$Chr))){
+	a<-c(a,rep(maxpos[i],size[i]))
+	b<-c(b,rep(plot_col[i],size[i]))}
+
+	output_ok$xpos<-output_ok$Pos+a
+	output_ok$col<-b
+	output_ok$col[output_ok$SNP %in% x$cof]<-'red'
+	
+	d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2
+
+	plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome')
+	axis(1,tick=FALSE,at=d,labels=c(1:max(unique(output_ok$Chr))))
+	abline(h=x$bonf_thresh,lty=3,col='black')
+
+
+    if (length(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]) > 0) { 
+      text(output_ok$xpos[-log10(output_ok$pval) > x$bonf_thresh], -log10(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]), output_ok$SNP[-log10(output_ok$pval) > x$bonf_thresh], pos=3, cex=0.7) 
+      legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" "))
+      } else {
+      legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" "))
+      }
+}
+  
+plot_region<-function(x,chrom,pos1,pos2){
+	region<-subset(x$out,Chr==chrom & Pos>=pos1 & Pos <=pos2)
+	region$col<- if (chrom %% 2 == 0) {'gray60'} else {'gray10'}
+	region$col[which(region$SNP %in% x$cof)]<-'red'
+	plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab='-log10(pval)',col=region$col,xlim=c(pos1,pos2))
+	abline(h=x$bonf_thresh,lty=3,col='black')}
+
+
+plot_fwd_GWAS<-function(x,step,snp_info,pval_filt) {
+	stopifnot(step<=length(x$pval_step))
+	output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh)
+	plot_GWAS(output)}
+
+plot_fwd_region<-function(x,step,snp_info,pval_filt,chrom,pos1,pos2) {
+	stopifnot(step<=length(x$pval_step))
+	output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh)
+	plot_region(output,chrom,pos1,pos2)}
+
+
+plot_opt_GWAS<-function(x,opt,snp_info,pval_filt) {
+	if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh)
+		plot_GWAS(output)}
+	else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh)
+		plot_GWAS(output)}
+	else {cat('error! \n opt must be extBIC or mbonf')}}
+
+plot_opt_region<-function(x,opt,snp_info,pval_filt,chrom,pos1,pos2) {
+	if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh)
+		plot_region(output,chrom,pos1,pos2)}
+	else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh)
+		plot_region(output,chrom,pos1,pos2)}
+	else {cat('error! \n opt must be extBIC or mbonf')}}
+
+
+qqplot_fwd_GWAS<-function(x,nsteps){
+	stopifnot(nsteps<=length(x$pval_step))
+	e<--log10(ppoints(nrow(x$pval_step[[1]]$out)))
+	ostep<-list()
+	ostep[[1]]<--log10(sort(x$pval_step[[1]]$out$pval))
+	for (i in 2:nsteps) {ostep[[i]]<--log10(sort(x$pval_step[[i]]$out$pval))}
+
+	maxp<-ceiling(max(unlist(ostep)))
+
+	plot(e,ostep[[1]],type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp))
+	abline(0,1,col="dark grey")
+
+	for (i in 2:nsteps) {
+	par(new=T)
+	plot(e,ostep[[i]],type='b',pch=20,cex=0.8,col=i,axes='F',xlab='',ylab='',xlim=c(0,max(e)+1),ylim=c(0,maxp))}
+	legend(0,maxp,lty=1,pch=20,col=c(1:length(ostep)),paste(c(0:(length(ostep)-1)),'cof',sep=' '))
+}
+
+qqplot_opt_GWAS<-function(x,opt){
+	if (opt=='extBIC') {
+		e<--log10(ppoints(nrow(x$opt_extBIC$out)))
+		o<--log10(sort(x$opt_extBIC$out$pval))
+		maxp<-ceiling(max(o))
+		plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to extBIC'))
+		abline(0,1,col="dark grey")}
+	else if (opt=='mbonf') {
+		e<--log10(ppoints(nrow(x$opt_mbonf$out)))
+		o<--log10(sort(x$opt_mbonf$out$pval))
+		maxp<-ceiling(max(o))
+		plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to mbonf'))
+		abline(0,1,col="dark grey")}
+	else {cat('error! \n opt must be extBIC or mbonf')}}
+
+