Mercurial > repos > dereeper > mlmm
changeset 0:6b7107812931 draft
Uploaded
author | dereeper |
---|---|
date | Thu, 02 Jul 2015 05:42:38 -0400 |
parents | |
children | 380b364980f9 |
files | mlmm/MLMM.pl mlmm/MLMM.sh mlmm/MLMM.xml mlmm/source_library/emma.mlmm.r mlmm/source_library/emma.r mlmm/source_library/mlmm.r mlmm/source_library/mlmm1.r mlmm/source_library/plot_MLMM.Ago.r |
diffstat | 8 files changed, 3791 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/MLMM.pl Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,155 @@ +#!/usr/bin/perl + +use strict; +use Switch; +use Getopt::Long; +use Bio::SeqIO; + + +my $usage = qq~Usage:$0 <args> [<opts>] +where <args> are: + -g, --geno <Genotype input> + -i, --info <SNP information. Genome position.> + -p, --pheno <Phenotype input> + -o, --out <output name> + -d, --directory <directory for MLMM R libraries> + -s, --step_number <number of steps. Maximum: 20. Default: 10> + -m, --method <Method: mbonf or extBIC. Default: mbonf> +~; +$usage .= "\n"; + +my ($geno,$map,$pheno,$out,$dir,$steps,$method); + + +GetOptions( + "geno=s" => \$geno, + "info=s" => \$map, + "pheno=s" => \$pheno, + "out=s" => \$out, + "dir=s" => \$dir, + "steps=s" => \$steps, + "method=s" => \$method +); + + +die $usage + if ( !$geno || !$map || !$pheno || !$out || !$dir || !$steps || !$method); + +my $max_steps = 10; +my $plot_opt = "mbonf"; +if ($method && $method ne 'mbonf' && $method ne 'extBIC') +{ + print "Aborted: Method must be mbonf or extBIC.\n"; + exit; +} +else +{ + $plot_opt = $method; +} +if ($steps && $steps !~/\d+/ && $steps > 20 && $steps < 2) +{ + print "Aborted: Number of steps must be greater than 2 and lower than 20.\n"; + exit; +} +else +{ + $max_steps = $steps; +} + + +my $chunk = 2; + +my $RSCRIPT_EXE = "Rscript"; +my $R_DIR = $dir; + + +my $head_trait = `head -1 $pheno`; +my @headers_traits = split(/\t/,$head_trait); +my $trait_name = $headers_traits[1]; + + +open( my $RCMD, ">rscript" ) or throw Error::Simple($!); + + + + +print $RCMD "Y_file <- \"" . $pheno . "\"\n"; +print $RCMD "X_file <- \"" . $geno . "\"\n"; +if($map) +{ + print $RCMD "map_file <- \"$map\"\n"; + print $RCMD "map <- read.table(map_file, sep = \"\\t\", header = T)\n"; +} +print $RCMD "mlmm_data = list()\n"; +print $RCMD "mlmm_data\$chunk <- $chunk\n"; +print $RCMD "mlmm_data\$maxsteps <- $max_steps\n"; +print $RCMD "genot <- read.table(X_file, sep = \"\\t\", header = T)\n"; +print $RCMD "genot_mat <- as.matrix(genot[, 2:ncol(genot)])\n"; +print $RCMD "rownames(genot_mat) <- genot\$Ind_id\n"; + +print $RCMD "phenot <- read.table(Y_file, sep = \"\\t\", header = T)\n"; + + + +# missing data imputation +print $RCMD "genot_imp <- genot_mat\n"; +print $RCMD "average <- colMeans(genot_imp, na.rm = T)\n"; +print $RCMD "for (i in 1:ncol(genot_imp)){genot_imp[is.na(genot_imp[,i]), i] <- average[i]}\n"; + +# kinship matrix computation +print $RCMD "average <- colMeans(genot_imp, na.rm = T)\n"; +print $RCMD "stdev <- apply(genot_imp, 2, sd)\n"; +print $RCMD "genot_stand <- sweep(sweep(genot_imp, 2, average, \"-\"), 2, stdev, \"/\")\n"; +print $RCMD "K_mat <- (genot_stand %*% t(genot_stand)) / ncol(genot_stand)\n"; +print $RCMD "write.table(K_mat, '$out.kinship', sep='\\t', dec='.', quote=F, col.names=T, row.names=T)\n"; + +print $RCMD "source(\"" . $R_DIR. "/mlmm.r\")\n"; +print $RCMD "source(\"" . $R_DIR. "/emma.r\")\n"; + +# mlmm +print $RCMD "mygwas <- mlmm(Y = phenot\$$trait_name, X = genot_imp, K = K_mat, nbchunks=mlmm_data\$chunk, maxsteps=mlmm_data\$maxsteps)\n"; + +# plots +print $RCMD "pdf('$out.pdf')\n"; +print $RCMD "plot_step_table(mygwas, \"h2\")\n"; +print $RCMD "plot_step_table(mygwas, \"extBIC\")\n"; +print $RCMD "plot_step_table(mygwas, \"maxpval\")\n"; +print $RCMD "plot_step_RSS(mygwas)\n"; +# for (my $j = 1; $j <= ($max_steps - 1); $j++) +# { + # print $RCMD "plot_fwd_GWAS(mygwas, step = $j, snp_info = map, pval_filt = 0.1)\n"; +# } +print $RCMD "plot_opt_GWAS(mygwas, opt = \"extBIC\", snp_info = map, pval_filt = 0.1)\n"; +print $RCMD "plot_opt_GWAS(mygwas, opt = \"mbonf\", snp_info = map, pval_filt = 0.1)\n"; +#print $RCMD "qqplot_fwd_GWAS(mygwas, nsteps = mlmm_data\$maxsteps)\n"; +print $RCMD "qqplot_opt_GWAS(mygwas, opt = \"extBIC\")\n"; +print $RCMD "qqplot_opt_GWAS(mygwas, opt = \"mbonf\")\n"; + +# outputs +print $RCMD "write.table(mygwas\$RSSout, '$out.rss', sep='\\t', dec='.', quote=F, col.names=T, row.names=F)\n"; +print $RCMD "write.table(mygwas\$step_table, '$out.steptable', sep='\\t', dec='.', quote=F, col.names=T, row.names=F)\n"; + +$plot_opt = "\$opt_" . $plot_opt; +print $RCMD "pval = mygwas" . $plot_opt . "\$out\n"; +print $RCMD "colnames(pval) = c(\"Marker_name\", \"Pvalue\")\n"; +print $RCMD "info_tmp = map\n"; +print $RCMD "colnames(info_tmp) = c(\"Marker_name\", \"Chr\", \"Pos\")\n"; +print $RCMD "res_asso = pval\n"; +print $RCMD qq~ +if(exists("info_tmp")){ + res_asso = merge(info_tmp, res_asso, by="Marker_name") + if( !is.element("Trait", colnames(info_tmp)) ){ + m = matrix(data="traitname", ncol=1, nrow=nrow(res_asso), dimnames=list(c(), c("Trait"))) + res_asso = cbind(m, res_asso) + } +} +~; +print $RCMD "res_asso = res_asso[order(res_asso[, \"Trait\"], res_asso[, \"Chr\"], res_asso[, \"Pos\"]), ]\n"; +print $RCMD "write.table(res_asso, '$out.res_asso', sep='\t', dec='.', quote=F, col.names=T, row.names=F)\n"; +close($RCMD); + +system("$RSCRIPT_EXE --vanilla rscript"); + + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/MLMM.sh Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,28 @@ +#!/bin/bash +geno=$1 +map=$2 +pheno=$3 +steps=$4 +method=$5 +output=$6 +pdf=$7 +kinship=$8 +rss=$9 +step_table=${10} +log=${11} + +directory=`dirname $0` +mkdir tmpdir$$ +cp -rf $geno tmpdir$$/geno +cp -rf $map tmpdir$$/map +cp -rf $pheno tmpdir$$/pheno + +perl $directory/MLMM.pl -g tmpdir$$/geno -i tmpdir$$/map -p tmpdir$$/pheno -s $steps -m $method -o tmpdir$$/output -d $directory/source_library >>$log 2>&1 + +mv tmpdir$$/output.pdf $pdf +mv tmpdir$$/output.kinship $kinship +mv tmpdir$$/output.res_asso $output +mv tmpdir$$/output.rss $rss +mv tmpdir$$/output.steptable $step_table + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/MLMM.xml Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,61 @@ +<tool id="mlmm" name="MLMM" version="1.0"> + <description>GWAS using Multi-Locus Mixed-Model (MLMM)</description> + <requirements> + <requirement type="binary">Rscript</requirement> + </requirements> + <command interpreter="bash">./MLMM.sh $geno $map $pheno $steps $method $output $pdf $kinship $rss $step_table $log + </command> + <inputs> + <param format="txt" name="geno" type="data" label="Genotype matrix" help="NxM, N = individuals in line, M = Markers in columns, Genotype coded in 0,1,2"/> + <param type="data" format="txt" name="map" label="SNP Information file" help="3 columns: SNP, Chrom, Pos"/> + <param format="txt" name="pheno" type="data" label="Phenotype matrix" help="NxT, N = individuals in line, T = Trait in columns (Phenot1, Phenot2...)"/> + <param type="text" name="steps" label="Maximum number of steps for the forward approach" value="10"/> + <param name="method" type="select"> + <option value="extBIC">EBIC</option> + <option value="mbonf" selected="True">MBonf</option> + </param> + </inputs> + <outputs> + <data format="txt" name="output" label="Association results"/> + <data format="txt" name="kinship" label="Kinship matrix"/> + <data format="pdf" name="pdf" label="PDF Graphical outputs"/> + <data format="txt" name="rss" label="RSS"/> + <data format="txt" name="step_table" label="Step Table"/> + <data format="txt" name="log" label="Log file"/> + </outputs> + <help> + + +.. class:: infomark + +**Program encapsulated in Galaxy by Southgreen** + +.. class:: infomark + +**MLMM version 1.0** + +----- + +============== + Please cite: +============== + +"An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations.", **Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M.**, Nature Genetics, 44: 825-830, 2012. + +----- + +=========== + Overview: +=========== + +MLMM is an efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. + +----- + +For further informations, please visite the MLMM_ website. + + +.. _MLMM: https://sites.google.com/site/vincentosegura/mlmm + </help> + +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/source_library/emma.mlmm.r Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,1274 @@ +emma.kinship <- function(snps, method="additive", use="all") { + n0 <- sum(snps==0,na.rm=TRUE) + nh <- sum(snps==0.5,na.rm=TRUE) + n1 <- sum(snps==1,na.rm=TRUE) + nNA <- sum(is.na(snps)) + + stopifnot(n0+nh+n1+nNA == length(snps)) + + if ( method == "dominant" ) { + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps)) + snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)] + } + else if ( method == "recessive" ) { + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps)) + snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)] + } + else if ( ( method == "additive" ) && ( nh > 0 ) ) { + dsnps <- snps + rsnps <- snps + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps)) + dsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)] + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps)) + rsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)] + snps <- rbind(dsnps,rsnps) + } + + if ( use == "all" ) { + mafs <- matrix(rowMeans(snps,na.rm=TRUE),nrow(snps),ncol(snps)) + snps[is.na(snps)] <- mafs[is.na(snps)] + } + else if ( use == "complete.obs" ) { + snps <- snps[rowSums(is.na(snps))==0,] + } + + n <- ncol(snps) + K <- matrix(nrow=n,ncol=n) + diag(K) <- 1 + + for(i in 2:n) { + for(j in 1:(i-1)) { + x <- snps[,i]*snps[,j] + (1-snps[,i])*(1-snps[,j]) + K[i,j] <- sum(x,na.rm=TRUE)/sum(!is.na(x)) + K[j,i] <- K[i,j] + } + } + return(K) +} + +emma.eigen.L <- function(Z,K,complete=TRUE) { + if ( is.null(Z) ) { + return(emma.eigen.L.wo.Z(K)) + } + else { + return(emma.eigen.L.w.Z(Z,K,complete)) + } +} + +emma.eigen.L.wo.Z <- function(K) { + eig <- eigen(K,symmetric=TRUE) + return(list(values=eig$values,vectors=eig$vectors)) +} + +emma.eigen.L.w.Z <- function(Z,K,complete=TRUE) { + if ( complete == FALSE ) { + vids <- colSums(Z)>0 + Z <- Z[,vids] + K <- K[vids,vids] + } + eig <- eigen(K%*%crossprod(Z,Z),symmetric=FALSE,EISPACK=TRUE) + return(list(values=eig$values,vectors=qr.Q(qr(Z%*%eig$vectors),complete=TRUE))) +} + +emma.eigen.R <- function(Z,K,X,complete=TRUE) { + if ( ncol(X) == 0 ) { + return(emma.eigen.L(Z,K)) + } + else if ( is.null(Z) ) { + return(emma.eigen.R.wo.Z(K,X)) + } + else { + return(emma.eigen.R.w.Z(Z,K,X,complete)) + } +} + +emma.eigen.R.wo.Z <- function(K, X) { + n <- nrow(X) + q <- ncol(X) + S <- diag(n)-X%*%solve(crossprod(X,X))%*%t(X) + eig <- eigen(S%*%(K+diag(1,n))%*%S,symmetric=TRUE) + stopifnot(!is.complex(eig$values)) + return(list(values=eig$values[1:(n-q)]-1,vectors=eig$vectors[,1:(n-q)])) +} + +emma.eigen.R.w.Z <- function(Z, K, X, complete = TRUE) { + if ( complete == FALSE ) { + vids <- colSums(Z) > 0 + Z <- Z[,vids] + K <- K[vids,vids] + } + n <- nrow(Z) + t <- ncol(Z) + q <- ncol(X) + + SZ <- Z - X%*%solve(crossprod(X,X))%*%crossprod(X,Z) + eig <- eigen(K%*%crossprod(Z,SZ),symmetric=FALSE,EISPACK=TRUE) + if ( is.complex(eig$values) ) { + eig$values <- Re(eig$values) + eig$vectors <- Re(eig$vectors) + } + qr.X <- qr.Q(qr(X)) + return(list(values=eig$values[1:(t-q)], + vectors=qr.Q(qr(cbind(SZ%*%eig$vectors[,1:(t-q)],qr.X)), + complete=TRUE)[,c(1:(t-q),(t+1):n)])) +} + +emma.delta.ML.LL.wo.Z <- function(logdelta, lambda, etas, xi) { + n <- length(xi) + delta <- exp(logdelta) + return( 0.5*(n*(log(n/(2*pi))-1-log(sum((etas*etas)/(lambda+delta))))-sum(log(xi+delta))) ) +} + +emma.delta.ML.LL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) { + t <- length(xi.1) + delta <- exp(logdelta) +# stopifnot(length(lambda) == length(etas.1)) + return( 0.5*(n*(log(n/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(xi.1+delta))+(n-t)*logdelta)) ) +} + +emma.delta.ML.dLL.wo.Z <- function(logdelta, lambda, etas, xi) { + n <- length(xi) + delta <- exp(logdelta) + etasq <- etas*etas + ldelta <- lambda+delta + return( 0.5*(n*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/(xi+delta))) ) +} + +emma.delta.ML.dLL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) { + t <- length(xi.1) + delta <- exp(logdelta) + etasq <- etas.1*etas.1 + ldelta <- lambda+delta + return( 0.5*(n*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/(xi.1+delta))+(n-t)/delta) ) ) +} + +emma.delta.REML.LL.wo.Z <- function(logdelta, lambda, etas) { + nq <- length(etas) + delta <- exp(logdelta) + return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas*etas/(lambda+delta))))-sum(log(lambda+delta))) ) +} + +emma.delta.REML.LL.w.Z <- function(logdelta, lambda, etas.1, n, t, etas.2.sq ) { + tq <- length(etas.1) + nq <- n - t + tq + delta <- exp(logdelta) + return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(lambda+delta))+(n-t)*logdelta)) ) +} + +emma.delta.REML.dLL.wo.Z <- function(logdelta, lambda, etas) { + nq <- length(etas) + delta <- exp(logdelta) + etasq <- etas*etas + ldelta <- lambda+delta + return( 0.5*(nq*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/ldelta)) ) +} + +emma.delta.REML.dLL.w.Z <- function(logdelta, lambda, etas.1, n, t1, etas.2.sq ) { + t <- t1 + tq <- length(etas.1) + nq <- n - t + tq + delta <- exp(logdelta) + etasq <- etas.1*etas.1 + ldelta <- lambda+delta + return( 0.5*(nq*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/ldelta)+(n-t)/delta)) ) +} + +emma.MLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL, eig.R = NULL) +{ + n <- length(y) + t <- nrow(K) + q <- ncol(X) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X) == n) + + if ( det(crossprod(X,X)) == 0 ) { + warning("X is singular") + return (list(ML=0,delta=0,ve=0,vg=0)) + } + + if ( is.null(Z) ) { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.wo.Z(K) + } + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.wo.Z(K,X) + } + etas <- crossprod(eig.R$vectors,y) + + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE) + Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n-q,m) + LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Xis))) + dLL <- 0.5*delta*(n*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Xis)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.R$values,etas,eig.L$values)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.R$values,etas,eig.L$values)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas, xi=eig.L$values) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.R$values, etas, eig.L$values)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.w.Z(Z,K) + } + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.w.Z(Z,K,X) + } + etas <- crossprod(eig.R$vectors,y) + etas.1 <- etas[1:(t-q)] + etas.2 <- etas[(t-q+1):(n-q)] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE) + Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t-q,m) + #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas)) + dLL <- 0.5*delta*(n*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.R$values, etas.1, eig.L$values, n, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.R$values+maxdelta))/n + } + else { + maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/n + } + maxve <- maxva*maxdelta + + return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.MLE.noX <- function(y, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL) +{ + n <- length(y) + t <- nrow(K) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + + if ( is.null(Z) ) { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.wo.Z(K) + } + etas <- crossprod(eig.L$vectors,y) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n,m) + LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Xis)))-colSums(log(Xis))) + dLL <- 0.5*delta*(n*colSums(Etasq/(Xis*Xis))/colSums(Etasq/Xis)-colSums(1/Xis)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + #print(dLL) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.L$values,etas,eig.L$values)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.L$values,etas,eig.L$values)) + } + + for( i in 1:(m-1) ) + { + #if ( ( dLL[i]*dLL[i+1] < 0 ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas=etas, xi=eig.L$values) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.L$values, etas, eig.L$values)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.w.Z(Z,K) + } + etas <- crossprod(eig.L$vectors,y) + etas.1 <- etas[1:t] + etas.2 <- etas[(t+1):n] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + + m <- length(logdelta) + delta <- exp(logdelta) + Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t,m) + #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas)) + dLL <- 0.5*delta*(n*(colSums(Etasq/(Xis*Xis))+etas.2.sq/(delta*delta))/(colSums(Etasq/Xis)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.L$values, etas.1, eig.L$values, n, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.L$values+maxdelta))/n + } + else { + maxva <- (sum(etas.1*etas.1/(eig.L$values+maxdelta))+etas.2.sq/maxdelta)/n + } + maxve <- maxva*maxdelta + + return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.REMLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL, eig.R = NULL) { + n <- length(y) + t <- nrow(K) + q <- ncol(X) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X) == n) + + if ( det(crossprod(X,X)) == 0 ) { + warning("X is singular") + return (list(REML=0,delta=0,ve=0,vg=0)) + } + + if ( is.null(Z) ) { + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.wo.Z(K,X) + } + etas <- crossprod(eig.R$vectors,y) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n-q,m) + LL <- 0.5*((n-q)*(log((n-q)/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Lambdas))) + dLL <- 0.5*delta*((n-q)*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Lambdas)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(llim,eig.R$values,etas)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(ulim,eig.R$values,etas)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.REML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(r$root,eig.R$values, etas)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.w.Z(Z,K,X) + } + etas <- crossprod(eig.R$vectors,y) + etas.1 <- etas[1:(t-q)] + etas.2 <- etas[(t-q+1):(n-q)] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t-q,m) + dLL <- 0.5*delta*((n-q)*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Lambdas)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(llim,eig.R$values,etas.1,n,t,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(ulim,eig.R$values,etas.1,n,t,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.REML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, n=n, t1=t, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(r$root,eig.R$values, etas.1, n, t, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.R$values+maxdelta))/(n-q) + } + else { + maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/(n-q) + } + maxve <- maxva*maxdelta + + return (list(REML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.ML.LRT <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) { + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + g <- nrow(ys) + n <- ncol(ys) + m <- nrow(xs) + t <- ncol(xs) + q0 <- ncol(X0) + q1 <- q0 + 1 + + if ( !ponly ) { + ML1s <- matrix(nrow=m,ncol=g) + ML0s <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + ML0 <- vector(length=g) + + stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X0) == n) + + if ( sum(is.na(ys)) == 0 ) { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + for(i in 1:g) { + ML0[i] <- emma.MLE(ys[i,],X0,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R0)$ML + } + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + stats[i,] <- rep(NA,g) + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + ML1s[i,] <- rep(NA,g) + ML0s[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + ML1s[i,] <- ML1s[i-1,] + ML0s[i,] <- ML0s[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0[vids,,drop=FALSE],xs[i,vids]) + eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X) + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + nr <- sum(vrows) + X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids]%*%t(xs[i,vids,drop=FALSE])) + eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X) + } + + for(j in 1:g) { + if ( nv == t ) { + MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) +# MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) + if (!ponly) { + ML1s[i,j] <- MLE$ML + vgs[i,j] <- MLE$vg + ves[i,j] <- MLE$ve + } + stats[i,j] <- 2*(MLE$ML-ML0[j]) + + } + else { + if ( is.null(Z) ) { + eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids]) + MLE0 <- emma.MLE(ys[j,vids],X0[vids,,drop=FALSE],K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vids],X,K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0) + } + else { + if ( nr == n ) { + MLE1 <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L) + } + else { + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids],K[vids,vids]) + MLE0 <- emma.MLE(ys[j,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vrows],X,K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0) + } + } + if (!ponly) { + ML1s[i,j] <- MLE1$ML + ML0s[i,j] <- MLE0$ML + vgs[i,j] <- MLE1$vg + ves[i,j] <- MLE1$ve + } + stats[i,j] <- 2*(MLE1$ML-MLE0$ML) + } + } + if ( ( nv == t ) && ( !ponly ) ) { + ML0s[i,] <- ML0 + } + ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE) + } + } + } + else { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + for(i in 1:g) { + vrows <- !is.na(ys[i,]) + if ( is.null(Z) ) { + ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vrows,vrows],NULL,ngrids,llim,ulim,esp)$ML + } + else { + vids <- colSums(Z[vrows,]>0) + + ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp)$ML + } + } + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + stats[i,] <- rep(NA,g) + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + ML1s[i,] <- rep(NA,g) + ML0s[,i] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + ML1s[i,] <- ML1s[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { +# print(j) + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + MLE <- emma.MLE(ys[j,],X,K,NULL,ngrids,llim,ulim,esp,eig.L,eig.R1) + } + else { + MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vrows,vrows],NULL,ngrids,llim,ulim,esp) + } + } + else { + if ( nr == n ) { + MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vtids,vtids],Z[vrows,vtids],ngrids,llim,ulim,esp) + } + } + + if (!ponly) { + ML1s[i,j] <- MLE$ML + vgs[i,j] <- MLE$vg + ves[i,j] <- MLE$ve + } + stats[i,j] <- 2*(MLE$ML-ML0[j]) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L(NULL,K[vtids,vtids]) + MLE0 <- emma.MLE(ys[j,vtids],X0[vtids,,drop=FALSE],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vtids],X[vtids,],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0) + } + else { + vtids <- as.logical(colSums(Z[vrows,])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids])) + eig.L0 <- emma.eigen.L(Z[vtrows,vtids],K[vtids,vtids]) + MLE0 <- emma.MLE(ys[j,vtrows],X0[vtrows,,drop=FALSE],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vtrows],X[vtrows,],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0) + } + if (!ponly) { + ML1s[i,j] <- MLE1$ML + vgs[i,j] <- MLE1$vg + ves[i,j] <- MLE1$ve + ML0s[i,j] <- MLE0$ML + } + stats[i,j] <- 2*(MLE1$ML-MLE0$ML) + } + } + if ( ( nv == t ) && ( !ponly ) ) { + ML0s[i,] <- ML0 + } + ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,ML1s=ML1s,ML0s=ML0s,stats=stats,vgs=vgs,ves=ves)) + } +} + +emma.test <- function(ys, xs, K, Z=NULL, x0s = NULL, X0 = NULL, dfxs = 1, dfx0s = 1, use.MLE = FALSE, use.LRT = FALSE, ngrids = 100, llim = -10, ulim = 10, esp=1e-10, ponly = FALSE) +{ + stopifnot (dfxs > 0) + + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + nx <- nrow(xs)/dfxs + + if ( is.null(x0s) ) { + dfx0s = 0 + x0s <- matrix(NA,0,ncol(xs)) + } + # X0 automatically contains intercept. If no intercept is to be used, + # X0 should be matrix(nrow=ncol(ys),ncol=0) + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + stopifnot(Z == NULL) # The case where Z is not null is not implemented + + ny <- nrow(ys) + iy <- ncol(ys) + ix <- ncol(xs) + + stopifnot(nrow(K) == ix) + stopifnot(ncol(K) == ix) + stopifnot(nrow(X0) == iy) + + if ( !ponly ) { + LLs <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + dfs <- matrix(nrow=m,ncol=g) + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + + # The case with no missing phenotypes + if ( sum(is.na(ys)) == 0 ) { + if ( ( use.MLE ) || ( !use.LRT ) ) { + eig.L0 <- emma.eigen.L(Z,K) + } + if ( dfx0s == 0 ) { + eig.R0 <- emma.eigen.R(Z,K,X0) + } + x.prev <- NULL + + for(i in 1:ix) { + x1 <- t(xs[(dfxs*(i-1)+1):(dfxs*i),,drop=FALSE]) + if ( dfxs0 == 0 ) { + x0 <- X0 + } + else { + x0 <- cbind(t(x0s[(dfx0s*(i-1)+1):(dfx0s*i),,drop=FALSE]),X0) + } + x <- cbind(x1,x0) + xvids <- rowSums(is.na(x) == 0) + nxv <- sum(xvids) + xv <- x[xvids,,drop=FALSE] + Kv <- K[xvids,xvids,drop=FALSE] + yv <- ys[j,xvids] + + if ( identical(x.prev, xv) ) { + if ( !ponly ) { + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + dfs[i,] <- dfs[i-1,] + REMLs[i,] <- REMLs[i-1,] + stats[i,] <- stats[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + eig.R1 = emma.eigen.R.wo.Z(Kv,xv) + + for(j in 1:iy) { + if ( ( use.MLE ) || ( !use.LRT ) ) { + if ( nxv < t ) { + # NOTE: this complexity can be improved by avoiding eigen computation for identical missing patterns + eig.L0v <- emma.eigen.L.wo.Z(Kv) + } + else { + eig.L0v <- eig.L0 + } + } + + if ( use.MLE ) { + MLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1) + stop("Not implemented yet") + } + else { + REMLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1) + if ( use.LRT ) { + stop("Not implemented yet") + } + else { + U <- eig.L0v$vectors * matrix(sqrt(1/(eig.L0v$values+REMLE$delta)),t,t,byrow=TRUE) + dfs[i,j] <- length(eig.R1$values) + yt <- crossprod(U,yv) + xt <- crossprod(U,xv) + ixx <- solve(crossprod(xt,xt)) + beta <- ixx%*%crossprod(xt,yt) + if ( dfxs == 1 ) { + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + model.m <- c(rep(1,dfxs),rep(0,ncol(xv)-dfxs)) + stats[i,j] <- + crossprod(crossprod(solve(crossprod(crossprod(iXX,model.m), + model.m)), + model.m*beta),model.m*beta) + + } + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + } + } + } + if ( dfxs == 1 ) { + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + else { + ps[i,] <- pf(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + } + # The case with missing genotypes - not implemented yet + else { + stop("Not implemented yet") + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + REMLs[i,] <- REMLs[i-1,] + dfs[i,] <- dfs[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids,drop=FALSE])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + yv <- ys[j,vrows] + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE) + } + else { + eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + else { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + + yt <- crossprod(U,yv) + Xt <- crossprod(U,X[vrows,,drop=FALSE]) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtids] + nr <- sum(vtids) + REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtids,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtrows] + nr <- sum(vtrows) + REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtrows,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + yt <- crossprod(U,yv) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves)) + } +} + +emma.REML.t <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) { + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + g <- nrow(ys) + n <- ncol(ys) + m <- nrow(xs) + t <- ncol(xs) + q0 <- ncol(X0) + q1 <- q0 + 1 + + stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X0) == n) + + if ( !ponly ) { + REMLs <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + dfs <- matrix(nrow=m,ncol=g) + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + + if ( sum(is.na(ys)) == 0 ) { + eig.L <- emma.eigen.L(Z,K) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if ( !ponly ) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + stats[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + dfs[i,] <- dfs[i-1,] + REMLs[i,] <- REMLs[i-1,] + stats[i,] <- stats[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0[vids,,drop=FALSE],xs[i,vids]) + eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X) + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X) + } + + for(j in 1:g) { + if ( nv == t ) { + REMLE <- emma.REMLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.R1) + if ( is.null(Z) ) { + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),t,t,byrow=TRUE) + dfs[i,j] <- nv - q1 + } + else { + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + dfs[i,j] <- n - q1 + } + yt <- crossprod(U,ys[j,]) + Xt <- crossprod(U,X) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids]) + nr <- sum(vids) + yv <- ys[j,vids] + REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + dfs[i,j] <- nr - q1 + } + else { + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids,drop=FALSE],K[vids,vids]) + yv <- ys[j,vrows] + nr <- sum(vrows) + tv <- sum(vids) + REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],Z[vrows,vids,drop=FALSE],ngrids,llim,ulim,esp,eig.R1) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-tv)),nr,nr,byrow=TRUE) + dfs[i,j] <- nr - q1 + } + yt <- crossprod(U,yv) + Xt <- crossprod(U,X) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if (!ponly) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + else { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + REMLs[i,] <- REMLs[i-1,] + dfs[i,] <- dfs[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids,drop=FALSE])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + yv <- ys[j,vrows] + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE) + } + else { + eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + else { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + + yt <- crossprod(U,yv) + Xt <- crossprod(U,X[vrows,,drop=FALSE]) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtids] + nr <- sum(vtids) + REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtids,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtrows] + nr <- sum(vtrows) + REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtrows,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + yt <- crossprod(U,yv) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves)) + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/source_library/emma.r Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,1274 @@ +emma.kinship <- function(snps, method="additive", use="all") { + n0 <- sum(snps==0,na.rm=TRUE) + nh <- sum(snps==0.5,na.rm=TRUE) + n1 <- sum(snps==1,na.rm=TRUE) + nNA <- sum(is.na(snps)) + + stopifnot(n0+nh+n1+nNA == length(snps)) + + if ( method == "dominant" ) { + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps)) + snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)] + } + else if ( method == "recessive" ) { + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps)) + snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)] + } + else if ( ( method == "additive" ) && ( nh > 0 ) ) { + dsnps <- snps + rsnps <- snps + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps)) + dsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)] + flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps)) + rsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)] + snps <- rbind(dsnps,rsnps) + } + + if ( use == "all" ) { + mafs <- matrix(rowMeans(snps,na.rm=TRUE),nrow(snps),ncol(snps)) + snps[is.na(snps)] <- mafs[is.na(snps)] + } + else if ( use == "complete.obs" ) { + snps <- snps[rowSums(is.na(snps))==0,] + } + + n <- ncol(snps) + K <- matrix(nrow=n,ncol=n) + diag(K) <- 1 + + for(i in 2:n) { + for(j in 1:(i-1)) { + x <- snps[,i]*snps[,j] + (1-snps[,i])*(1-snps[,j]) + K[i,j] <- sum(x,na.rm=TRUE)/sum(!is.na(x)) + K[j,i] <- K[i,j] + } + } + return(K) +} + +emma.eigen.L <- function(Z,K,complete=TRUE) { + if ( is.null(Z) ) { + return(emma.eigen.L.wo.Z(K)) + } + else { + return(emma.eigen.L.w.Z(Z,K,complete)) + } +} + +emma.eigen.L.wo.Z <- function(K) { + eig <- eigen(K,symmetric=TRUE) + return(list(values=eig$values,vectors=eig$vectors)) +} + +emma.eigen.L.w.Z <- function(Z,K,complete=TRUE) { + if ( complete == FALSE ) { + vids <- colSums(Z)>0 + Z <- Z[,vids] + K <- K[vids,vids] + } + eig <- eigen(K%*%crossprod(Z,Z),symmetric=FALSE,EISPACK=TRUE) + return(list(values=eig$values,vectors=qr.Q(qr(Z%*%eig$vectors),complete=TRUE))) +} + +emma.eigen.R <- function(Z,K,X,complete=TRUE) { + if ( ncol(X) == 0 ) { + return(emma.eigen.L(Z,K)) + } + else if ( is.null(Z) ) { + return(emma.eigen.R.wo.Z(K,X)) + } + else { + return(emma.eigen.R.w.Z(Z,K,X,complete)) + } +} + +emma.eigen.R.wo.Z <- function(K, X) { + n <- nrow(X) + q <- ncol(X) + S <- diag(n)-X%*%solve(crossprod(X,X))%*%t(X) + eig <- eigen(S%*%(K+diag(1,n))%*%S,symmetric=TRUE) + stopifnot(!is.complex(eig$values)) + return(list(values=eig$values[1:(n-q)]-1,vectors=eig$vectors[,1:(n-q)])) +} + +emma.eigen.R.w.Z <- function(Z, K, X, complete = TRUE) { + if ( complete == FALSE ) { + vids <- colSums(Z) > 0 + Z <- Z[,vids] + K <- K[vids,vids] + } + n <- nrow(Z) + t <- ncol(Z) + q <- ncol(X) + + SZ <- Z - X%*%solve(crossprod(X,X))%*%crossprod(X,Z) + eig <- eigen(K%*%crossprod(Z,SZ),symmetric=FALSE,EISPACK=TRUE) + if ( is.complex(eig$values) ) { + eig$values <- Re(eig$values) + eig$vectors <- Re(eig$vectors) + } + qr.X <- qr.Q(qr(X)) + return(list(values=eig$values[1:(t-q)], + vectors=qr.Q(qr(cbind(SZ%*%eig$vectors[,1:(t-q)],qr.X)), + complete=TRUE)[,c(1:(t-q),(t+1):n)])) +} + +emma.delta.ML.LL.wo.Z <- function(logdelta, lambda, etas, xi) { + n <- length(xi) + delta <- exp(logdelta) + return( 0.5*(n*(log(n/(2*pi))-1-log(sum((etas*etas)/(lambda+delta))))-sum(log(xi+delta))) ) +} + +emma.delta.ML.LL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) { + t <- length(xi.1) + delta <- exp(logdelta) +# stopifnot(length(lambda) == length(etas.1)) + return( 0.5*(n*(log(n/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(xi.1+delta))+(n-t)*logdelta)) ) +} + +emma.delta.ML.dLL.wo.Z <- function(logdelta, lambda, etas, xi) { + n <- length(xi) + delta <- exp(logdelta) + etasq <- etas*etas + ldelta <- lambda+delta + return( 0.5*(n*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/(xi+delta))) ) +} + +emma.delta.ML.dLL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) { + t <- length(xi.1) + delta <- exp(logdelta) + etasq <- etas.1*etas.1 + ldelta <- lambda+delta + return( 0.5*(n*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/(xi.1+delta))+(n-t)/delta) ) ) +} + +emma.delta.REML.LL.wo.Z <- function(logdelta, lambda, etas) { + nq <- length(etas) + delta <- exp(logdelta) + return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas*etas/(lambda+delta))))-sum(log(lambda+delta))) ) +} + +emma.delta.REML.LL.w.Z <- function(logdelta, lambda, etas.1, n, t, etas.2.sq ) { + tq <- length(etas.1) + nq <- n - t + tq + delta <- exp(logdelta) + return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(lambda+delta))+(n-t)*logdelta)) ) +} + +emma.delta.REML.dLL.wo.Z <- function(logdelta, lambda, etas) { + nq <- length(etas) + delta <- exp(logdelta) + etasq <- etas*etas + ldelta <- lambda+delta + return( 0.5*(nq*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/ldelta)) ) +} + +emma.delta.REML.dLL.w.Z <- function(logdelta, lambda, etas.1, n, t1, etas.2.sq ) { + t <- t1 + tq <- length(etas.1) + nq <- n - t + tq + delta <- exp(logdelta) + etasq <- etas.1*etas.1 + ldelta <- lambda+delta + return( 0.5*(nq*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/ldelta)+(n-t)/delta)) ) +} + +emma.MLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL, eig.R = NULL) +{ + n <- length(y) + t <- nrow(K) + q <- ncol(X) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X) == n) + + if ( det(crossprod(X,X)) == 0 ) { + warning("X is singular") + return (list(ML=0,delta=0,ve=0,vg=0)) + } + + if ( is.null(Z) ) { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.wo.Z(K) + } + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.wo.Z(K,X) + } + etas <- crossprod(eig.R$vectors,y) + + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE) + Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n-q,m) + LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Xis))) + dLL <- 0.5*delta*(n*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Xis)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.R$values,etas,eig.L$values)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.R$values,etas,eig.L$values)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas, xi=eig.L$values) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.R$values, etas, eig.L$values)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.w.Z(Z,K) + } + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.w.Z(Z,K,X) + } + etas <- crossprod(eig.R$vectors,y) + etas.1 <- etas[1:(t-q)] + etas.2 <- etas[(t-q+1):(n-q)] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE) + Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t-q,m) + #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas)) + dLL <- 0.5*delta*(n*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.R$values, etas.1, eig.L$values, n, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.R$values+maxdelta))/n + } + else { + maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/n + } + maxve <- maxva*maxdelta + + return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.MLE.noX <- function(y, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL) +{ + n <- length(y) + t <- nrow(K) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + + if ( is.null(Z) ) { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.wo.Z(K) + } + etas <- crossprod(eig.L$vectors,y) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n,m) + LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Xis)))-colSums(log(Xis))) + dLL <- 0.5*delta*(n*colSums(Etasq/(Xis*Xis))/colSums(Etasq/Xis)-colSums(1/Xis)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + #print(dLL) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.L$values,etas,eig.L$values)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.L$values,etas,eig.L$values)) + } + + for( i in 1:(m-1) ) + { + #if ( ( dLL[i]*dLL[i+1] < 0 ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas=etas, xi=eig.L$values) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.L$values, etas, eig.L$values)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.L) ) { + eig.L <- emma.eigen.L.w.Z(Z,K) + } + etas <- crossprod(eig.L$vectors,y) + etas.1 <- etas[1:t] + etas.2 <- etas[(t+1):n] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + + m <- length(logdelta) + delta <- exp(logdelta) + Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t,m) + #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas)) + dLL <- 0.5*delta*(n*(colSums(Etasq/(Xis*Xis))+etas.2.sq/(delta*delta))/(colSums(Etasq/Xis)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.L$values, etas.1, eig.L$values, n, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.L$values+maxdelta))/n + } + else { + maxva <- (sum(etas.1*etas.1/(eig.L$values+maxdelta))+etas.2.sq/maxdelta)/n + } + maxve <- maxva*maxdelta + + return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.REMLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10, + esp=1e-10, eig.L = NULL, eig.R = NULL) { + n <- length(y) + t <- nrow(K) + q <- ncol(X) + +# stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X) == n) + + if ( det(crossprod(X,X)) == 0 ) { + warning("X is singular") + return (list(REML=0,delta=0,ve=0,vg=0)) + } + + if ( is.null(Z) ) { + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.wo.Z(K,X) + } + etas <- crossprod(eig.R$vectors,y) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE) + Etasq <- matrix(etas*etas,n-q,m) + LL <- 0.5*((n-q)*(log((n-q)/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Lambdas))) + dLL <- 0.5*delta*((n-q)*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Lambdas)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(llim,eig.R$values,etas)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(ulim,eig.R$values,etas)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.REML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.REML.LL.wo.Z(r$root,eig.R$values, etas)) + } + } +# optdelta <- exp(optlogdelta) + } + else { + if ( is.null(eig.R) ) { + eig.R <- emma.eigen.R.w.Z(Z,K,X) + } + etas <- crossprod(eig.R$vectors,y) + etas.1 <- etas[1:(t-q)] + etas.2 <- etas[(t-q+1):(n-q)] + etas.2.sq <- sum(etas.2*etas.2) + + logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim + m <- length(logdelta) + delta <- exp(logdelta) + Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE) + Etasq <- matrix(etas.1*etas.1,t-q,m) + dLL <- 0.5*delta*((n-q)*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Lambdas)+(n-t)/delta)) + + optlogdelta <- vector(length=0) + optLL <- vector(length=0) + if ( dLL[1] < esp ) { + optlogdelta <- append(optlogdelta, llim) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(llim,eig.R$values,etas.1,n,t,etas.2.sq)) + } + if ( dLL[m-1] > 0-esp ) { + optlogdelta <- append(optlogdelta, ulim) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(ulim,eig.R$values,etas.1,n,t,etas.2.sq)) + } + + for( i in 1:(m-1) ) + { + if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) ) + { + r <- uniroot(emma.delta.REML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, n=n, t1=t, etas.2.sq = etas.2.sq ) + optlogdelta <- append(optlogdelta, r$root) + optLL <- append(optLL, emma.delta.REML.LL.w.Z(r$root,eig.R$values, etas.1, n, t, etas.2.sq )) + } + } +# optdelta <- exp(optlogdelta) + } + + maxdelta <- exp(optlogdelta[which.max(optLL)]) + maxLL <- max(optLL) + if ( is.null(Z) ) { + maxva <- sum(etas*etas/(eig.R$values+maxdelta))/(n-q) + } + else { + maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/(n-q) + } + maxve <- maxva*maxdelta + + return (list(REML=maxLL,delta=maxdelta,ve=maxve,vg=maxva)) +} + +emma.ML.LRT <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) { + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + g <- nrow(ys) + n <- ncol(ys) + m <- nrow(xs) + t <- ncol(xs) + q0 <- ncol(X0) + q1 <- q0 + 1 + + if ( !ponly ) { + ML1s <- matrix(nrow=m,ncol=g) + ML0s <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + ML0 <- vector(length=g) + + stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X0) == n) + + if ( sum(is.na(ys)) == 0 ) { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + for(i in 1:g) { + ML0[i] <- emma.MLE(ys[i,],X0,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R0)$ML + } + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + stats[i,] <- rep(NA,g) + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + ML1s[i,] <- rep(NA,g) + ML0s[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + ML1s[i,] <- ML1s[i-1,] + ML0s[i,] <- ML0s[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0[vids,,drop=FALSE],xs[i,vids]) + eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X) + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + nr <- sum(vrows) + X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids]%*%t(xs[i,vids,drop=FALSE])) + eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X) + } + + for(j in 1:g) { + if ( nv == t ) { + MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) +# MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) + if (!ponly) { + ML1s[i,j] <- MLE$ML + vgs[i,j] <- MLE$vg + ves[i,j] <- MLE$ve + } + stats[i,j] <- 2*(MLE$ML-ML0[j]) + + } + else { + if ( is.null(Z) ) { + eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids]) + MLE0 <- emma.MLE(ys[j,vids],X0[vids,,drop=FALSE],K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vids],X,K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0) + } + else { + if ( nr == n ) { + MLE1 <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L) + } + else { + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids],K[vids,vids]) + MLE0 <- emma.MLE(ys[j,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vrows],X,K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0) + } + } + if (!ponly) { + ML1s[i,j] <- MLE1$ML + ML0s[i,j] <- MLE0$ML + vgs[i,j] <- MLE1$vg + ves[i,j] <- MLE1$ve + } + stats[i,j] <- 2*(MLE1$ML-MLE0$ML) + } + } + if ( ( nv == t ) && ( !ponly ) ) { + ML0s[i,] <- ML0 + } + ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE) + } + } + } + else { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + for(i in 1:g) { + vrows <- !is.na(ys[i,]) + if ( is.null(Z) ) { + ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vrows,vrows],NULL,ngrids,llim,ulim,esp)$ML + } + else { + vids <- colSums(Z[vrows,]>0) + + ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp)$ML + } + } + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + stats[i,] <- rep(NA,g) + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + ML1s[i,] <- rep(NA,g) + ML0s[,i] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + ML1s[i,] <- ML1s[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { +# print(j) + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + MLE <- emma.MLE(ys[j,],X,K,NULL,ngrids,llim,ulim,esp,eig.L,eig.R1) + } + else { + MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vrows,vrows],NULL,ngrids,llim,ulim,esp) + } + } + else { + if ( nr == n ) { + MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vtids,vtids],Z[vrows,vtids],ngrids,llim,ulim,esp) + } + } + + if (!ponly) { + ML1s[i,j] <- MLE$ML + vgs[i,j] <- MLE$vg + ves[i,j] <- MLE$ve + } + stats[i,j] <- 2*(MLE$ML-ML0[j]) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L(NULL,K[vtids,vtids]) + MLE0 <- emma.MLE(ys[j,vtids],X0[vtids,,drop=FALSE],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vtids],X[vtids,],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0) + } + else { + vtids <- as.logical(colSums(Z[vrows,])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids])) + eig.L0 <- emma.eigen.L(Z[vtrows,vtids],K[vtids,vtids]) + MLE0 <- emma.MLE(ys[j,vtrows],X0[vtrows,,drop=FALSE],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0) + MLE1 <- emma.MLE(ys[j,vtrows],X[vtrows,],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0) + } + if (!ponly) { + ML1s[i,j] <- MLE1$ML + vgs[i,j] <- MLE1$vg + ves[i,j] <- MLE1$ve + ML0s[i,j] <- MLE0$ML + } + stats[i,j] <- 2*(MLE1$ML-MLE0$ML) + } + } + if ( ( nv == t ) && ( !ponly ) ) { + ML0s[i,] <- ML0 + } + ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,ML1s=ML1s,ML0s=ML0s,stats=stats,vgs=vgs,ves=ves)) + } +} + +emma.test <- function(ys, xs, K, Z=NULL, x0s = NULL, X0 = NULL, dfxs = 1, dfx0s = 1, use.MLE = FALSE, use.LRT = FALSE, ngrids = 100, llim = -10, ulim = 10, esp=1e-10, ponly = FALSE) +{ + stopifnot (dfxs > 0) + + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + nx <- nrow(xs)/dfxs + + if ( is.null(x0s) ) { + dfx0s = 0 + x0s <- matrix(NA,0,ncol(xs)) + } + # X0 automatically contains intercept. If no intercept is to be used, + # X0 should be matrix(nrow=ncol(ys),ncol=0) + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + stopifnot(Z == NULL) # The case where Z is not null is not implemented + + ny <- nrow(ys) + iy <- ncol(ys) + ix <- ncol(xs) + + stopifnot(nrow(K) == ix) + stopifnot(ncol(K) == ix) + stopifnot(nrow(X0) == iy) + + if ( !ponly ) { + LLs <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + dfs <- matrix(nrow=m,ncol=g) + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + + # The case with no missing phenotypes + if ( sum(is.na(ys)) == 0 ) { + if ( ( use.MLE ) || ( !use.LRT ) ) { + eig.L0 <- emma.eigen.L(Z,K) + } + if ( dfx0s == 0 ) { + eig.R0 <- emma.eigen.R(Z,K,X0) + } + x.prev <- NULL + + for(i in 1:ix) { + x1 <- t(xs[(dfxs*(i-1)+1):(dfxs*i),,drop=FALSE]) + if ( dfxs0 == 0 ) { + x0 <- X0 + } + else { + x0 <- cbind(t(x0s[(dfx0s*(i-1)+1):(dfx0s*i),,drop=FALSE]),X0) + } + x <- cbind(x1,x0) + xvids <- rowSums(is.na(x) == 0) + nxv <- sum(xvids) + xv <- x[xvids,,drop=FALSE] + Kv <- K[xvids,xvids,drop=FALSE] + yv <- ys[j,xvids] + + if ( identical(x.prev, xv) ) { + if ( !ponly ) { + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + dfs[i,] <- dfs[i-1,] + REMLs[i,] <- REMLs[i-1,] + stats[i,] <- stats[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + eig.R1 = emma.eigen.R.wo.Z(Kv,xv) + + for(j in 1:iy) { + if ( ( use.MLE ) || ( !use.LRT ) ) { + if ( nxv < t ) { + # NOTE: this complexity can be improved by avoiding eigen computation for identical missing patterns + eig.L0v <- emma.eigen.L.wo.Z(Kv) + } + else { + eig.L0v <- eig.L0 + } + } + + if ( use.MLE ) { + MLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1) + stop("Not implemented yet") + } + else { + REMLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1) + if ( use.LRT ) { + stop("Not implemented yet") + } + else { + U <- eig.L0v$vectors * matrix(sqrt(1/(eig.L0v$values+REMLE$delta)),t,t,byrow=TRUE) + dfs[i,j] <- length(eig.R1$values) + yt <- crossprod(U,yv) + xt <- crossprod(U,xv) + ixx <- solve(crossprod(xt,xt)) + beta <- ixx%*%crossprod(xt,yt) + if ( dfxs == 1 ) { + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + model.m <- c(rep(1,dfxs),rep(0,ncol(xv)-dfxs)) + stats[i,j] <- + crossprod(crossprod(solve(crossprod(crossprod(iXX,model.m), + model.m)), + model.m*beta),model.m*beta) + + } + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + } + } + } + if ( dfxs == 1 ) { + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + else { + ps[i,] <- pf(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + } + # The case with missing genotypes - not implemented yet + else { + stop("Not implemented yet") + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + REMLs[i,] <- REMLs[i-1,] + dfs[i,] <- dfs[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids,drop=FALSE])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + yv <- ys[j,vrows] + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE) + } + else { + eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + else { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + + yt <- crossprod(U,yv) + Xt <- crossprod(U,X[vrows,,drop=FALSE]) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtids] + nr <- sum(vtids) + REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtids,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtrows] + nr <- sum(vtrows) + REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtrows,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + yt <- crossprod(U,yv) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves)) + } +} + +emma.REML.t <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) { + if ( is.null(dim(ys)) || ncol(ys) == 1 ) { + ys <- matrix(ys,1,length(ys)) + } + if ( is.null(dim(xs)) || ncol(xs) == 1 ) { + xs <- matrix(xs,1,length(xs)) + } + if ( is.null(X0) ) { + X0 <- matrix(1,ncol(ys),1) + } + + g <- nrow(ys) + n <- ncol(ys) + m <- nrow(xs) + t <- ncol(xs) + q0 <- ncol(X0) + q1 <- q0 + 1 + + stopifnot(nrow(K) == t) + stopifnot(ncol(K) == t) + stopifnot(nrow(X0) == n) + + if ( !ponly ) { + REMLs <- matrix(nrow=m,ncol=g) + vgs <- matrix(nrow=m,ncol=g) + ves <- matrix(nrow=m,ncol=g) + } + dfs <- matrix(nrow=m,ncol=g) + stats <- matrix(nrow=m,ncol=g) + ps <- matrix(nrow=m,ncol=g) + + if ( sum(is.na(ys)) == 0 ) { + eig.L <- emma.eigen.L(Z,K) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if ( !ponly ) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + stats[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + dfs[i,] <- dfs[i-1,] + REMLs[i,] <- REMLs[i-1,] + stats[i,] <- stats[i-1,] + } + ps[i,] <- ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0[vids,,drop=FALSE],xs[i,vids]) + eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X) + } + else { + vrows <- as.logical(rowSums(Z[,vids])) + X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X) + } + + for(j in 1:g) { + if ( nv == t ) { + REMLE <- emma.REMLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.R1) + if ( is.null(Z) ) { + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),t,t,byrow=TRUE) + dfs[i,j] <- nv - q1 + } + else { + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + dfs[i,j] <- n - q1 + } + yt <- crossprod(U,ys[j,]) + Xt <- crossprod(U,X) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids]) + nr <- sum(vids) + yv <- ys[j,vids] + REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + dfs[i,j] <- nr - q1 + } + else { + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids,drop=FALSE],K[vids,vids]) + yv <- ys[j,vrows] + nr <- sum(vrows) + tv <- sum(vids) + REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],Z[vrows,vids,drop=FALSE],ngrids,llim,ulim,esp,eig.R1) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-tv)),nr,nr,byrow=TRUE) + dfs[i,j] <- nr - q1 + } + yt <- crossprod(U,yv) + Xt <- crossprod(U,X) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if (!ponly) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + else { + eig.L <- emma.eigen.L(Z,K) + eig.R0 <- emma.eigen.R(Z,K,X0) + + x.prev <- vector(length=0) + + for(i in 1:m) { + vids <- !is.na(xs[i,]) + nv <- sum(vids) + xv <- xs[i,vids] + + if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) { + if (!ponly) { + vgs[i,] <- rep(NA,g) + ves[i,] <- rep(NA,g) + REMLs[i,] <- rep(NA,g) + dfs[i,] <- rep(NA,g) + } + ps[i,] = rep(1,g) + } + else if ( identical(x.prev, xv) ) { + if ( !ponly ) { + stats[i,] <- stats[i-1,] + vgs[i,] <- vgs[i-1,] + ves[i,] <- ves[i-1,] + REMLs[i,] <- REMLs[i-1,] + dfs[i,] <- dfs[i-1,] + } + ps[i,] = ps[i-1,] + } + else { + if ( is.null(Z) ) { + X <- cbind(X0,xs[i,]) + if ( nv == t ) { + eig.R1 = emma.eigen.R.wo.Z(K,X) + } + } + else { + vrows <- as.logical(rowSums(Z[,vids,drop=FALSE])) + X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE])) + if ( nv == t ) { + eig.R1 = emma.eigen.R.w.Z(Z,K,X) + } + } + + for(j in 1:g) { + vrows <- !is.na(ys[j,]) + if ( nv == t ) { + yv <- ys[j,vrows] + nr <- sum(vrows) + if ( is.null(Z) ) { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE) + } + else { + eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + else { + if ( nr == n ) { + REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1) + U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE) + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + } + dfs[i,j] <- nr-q1 + } + + yt <- crossprod(U,yv) + Xt <- crossprod(U,X[vrows,,drop=FALSE]) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + } + else { + if ( is.null(Z) ) { + vtids <- vrows & vids + eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtids] + nr <- sum(vtids) + REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtids,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + else { + vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids + vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE])) + eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE]) + yv <- ys[j,vtrows] + nr <- sum(vtrows) + REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp) + U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE) + Xt <- crossprod(U,X[vtrows,,drop=FALSE]) + dfs[i,j] <- nr-q1 + } + yt <- crossprod(U,yv) + iXX <- solve(crossprod(Xt,Xt)) + beta <- iXX%*%crossprod(Xt,yt) + if ( !ponly ) { + vgs[i,j] <- REMLE$vg + ves[i,j] <- REMLE$ve + REMLs[i,j] <- REMLE$REML + } + stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg) + + } + } + ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE) + } + } + } + if ( ponly ) { + return (ps) + } + else { + return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves)) + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/source_library/mlmm.r Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,477 @@ +############################################################################################################################################## +###MLMM - Multi-Locus Mixed Model +###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH +####### +# +##note: require EMMA +#library(emma) +#source('emma.r') +# +##REQUIRED DATA & FORMAT +# +#PHENOTYPE - Y: a vector of length m, with names(Y)=individual names +#GENOTYPE - X: a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names +#KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names +#each of these data being sorted in the same way, according to the individual name +# +##FOR PLOTING THE GWAS RESULTS +#SNP INFORMATION - snp_info: a data frame having at least 3 columns: +# - 1 named 'SNP', with SNP names (same as colnames(X)), +# - 1 named 'Chr', with the chromosome number to which belong each SNP +# - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to. +####### +# +##FUNCTIONS USE +#save this file somewhere on your computer and source it! +#source('path/mlmm.r') +# +###FORWARD + BACKWARD ANALYSES +#mygwas<-mlmm(Y,X,K,nbchunks,maxsteps) +#X,Y,K as described above +#nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory +#maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, +# however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. +# It's value must be specified as an integer >= 3 +# +###RESULTS +# +##STEPWISE TABLE +#mygwas$step_table +# +##PLOTS +# +##PLOTS FORM THE FORWARD TABLE +#plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC')) +# +##RSS PLOT +#plot_step_RSS(mygwas) +# +##GWAS MANHATTAN PLOTS +# +#FORWARD STEPS +#plot_fwd_GWAS(mygwas,step,snp_info,pval_filt) +#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +# +#OPTIMAL MODELS +#Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria +# +#plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +# +##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST +#plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2) +#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +#chrom is an integer specifying the chromosome on which the region of interest is +#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info +# +#plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +#chrom is an integer specifying the chromosome on which the region of interest is +#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info +# +##QQPLOTS of pvalues +#qqplot_fwd_GWAS(mygwas,nsteps) +#nsteps=maximum number of forward steps to be displayed +# +#qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf')) +# +############################################################################################################################################## + +mlmm<-function(Y,X,K,nbchunks,maxsteps) { + +n<-length(Y) +m<-ncol(X) + +stopifnot(ncol(K) == n) +stopifnot(nrow(K) == n) +stopifnot(nrow(X) == n) +stopifnot(nbchunks >= 2) +stopifnot(maxsteps >= 3) + +#INTERCEPT + +Xo<-rep(1,n) + +#K MATRIX NORMALISATION + +K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K +rm(K) + +#step 0 : NULL MODEL +cof_fwd<-list() +cof_fwd[[1]]<-as.matrix(Xo) +colnames(cof_fwd[[1]])<-'Xo' + +mod_fwd<-list() +mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm) + +herit_fwd<-list() +herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve) + +RSSf<-list() +RSSf[[1]]<-'NA' + +RSS_H0<-list() +RSS_H0[[1]]<-'NA' + +df1<-1 +df2<-list() +df2[[1]]<-'NA' + +Ftest<-list() +Ftest[[1]]<-'NA' + +pval<-list() +pval[[1]]<-'NA' + +fwd_lm<-list() + +cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n') + +#step 1 : EMMAX + +M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[1]]) +fwd_lm[[1]]<-summary(lm(Y_t~0+cof_fwd_t)) +Res_H0<-fwd_lm[[1]]$residuals +Q_<-qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[2]]<-unlist(RSS) +RSS_H0[[2]]<-sum(Res_H0^2) +df2[[2]]<-n-df1-ncol(cof_fwd[[1]]) +Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1 +pval[[2]]<-pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE) + +cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])]) +colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1])) +mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm) +herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) + +cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n') + +#FORWARD + +for (i in 3:(maxsteps)) { +if (herit_fwd[[i-2]] < 0.01) break else { + +M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[i-1]]) +fwd_lm[[i-1]]<-summary(lm(Y_t~0+cof_fwd_t)) +Res_H0<-fwd_lm[[i-1]]$residuals +Q_ <- qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[i]]<-unlist(RSS) +RSS_H0[[i]]<-sum(Res_H0^2) +df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]]) +Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1 +pval[[i]]<-pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE) + +cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])]) +colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1])) +mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm) +herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)} +cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')} +rm(i) + +##gls at last forward step +M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]]) +fwd_lm[[length(mod_fwd)]]<-summary(lm(Y_t~0+cof_fwd_t)) + +Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals +Q_ <- qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[length(mod_fwd)+1]]<-unlist(RSS) +RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2) +df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]]) +Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1 +pval[[length(mod_fwd)+1]]<-pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) + +##get max pval at each forward step +max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm)) +max_pval_fwd[1]<-0 +for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])} +rm(i) + +##get the number of parameters & Loglikelihood from ML at each step +mod_fwd_LL<-list() +mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML) +for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)} +rm(i) + +cat('backward analysis','\n') + +##BACKWARD (1st step == last fwd step) + +dropcof_bwd<-list() +cof_bwd<-list() +mod_bwd <- list() +bwd_lm<-list() +herit_bwd<-list() + +dropcof_bwd[[1]]<-'NA' +cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]) +colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]] +mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm) +herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve) +M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_bwd_t<-crossprod(M,cof_bwd[[1]]) +bwd_lm[[1]]<-summary(lm(Y_t~0+cof_bwd_t)) + +rm(M,Y_t,cof_bwd_t) + +for (i in 2:length(mod_fwd)) { +dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))] +cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]) +colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]] +mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm) +herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve) +M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_bwd_t<-crossprod(M,cof_bwd[[i]]) +bwd_lm[[i]]<-summary(lm(Y_t~0+cof_bwd_t)) +rm(M,Y_t,cof_bwd_t)} + +rm(i) + +##get max pval at each backward step +max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm)) +for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])} +max_pval_bwd[length(bwd_lm)]<-0 + +##get the number of parameters & Loglikelihood from ML at each step +mod_bwd_LL<-list() +mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML) +for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)} +rm(i) + +cat('creating output','\n') + +##Forward Table: Fwd + Bwd Tables +#Compute parameters for model criteria +BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)} +extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)} + +fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]] + ,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]])) +for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table, + data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]] + ,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))} + +rm(i) + +bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]] + ,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]])) +for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table, + data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]] + ,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))} + +rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd) + +fwdbwd_table<-rbind(fwd_table,bwd_table) + +#RSS for plot +mod_fwd_RSS<-vector() +mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2) +for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)} +mod_bwd_RSS<-vector() +mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2) +for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)} +expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]})) +h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS) +unexpl_RSS<-1-expl_RSS-h2_RSS +plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum)) + +#GLS pvals at each step +pval_step<-list() +pval_step[[1]]<-list(out=data.frame('SNP'=colnames(X),'pval'=pval[[2]]),cof='') +for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]), + data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),cof=colnames(cof_fwd[[i]])[-1])} + +#GLS pvals for best models according to extBIC and mbonf + +opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],] +opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],] +bestmodel_pvals<-function(model) {if(substr(model$step_,start=0,stop=3)=='fwd') { + pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') { + cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]] + mixedmod<-emma.REMLE(Y,cof,K_norm) + M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n))) + Y_t<-crossprod(M,Y) + cof_t<-crossprod(M,cof) + GLS_lm<-summary(lm(Y_t~0+cof_t)) + Res_H0<-GLS_lm$residuals + Q_ <- qr.Q(qr(cof_t)) + RSS<-list() + for (j in 1:(nbchunks-1)) { + X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) + RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) + rm(X_t)} + X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))]) + RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) + rm(X_t,j) + RSSf<-unlist(RSS) + RSS_H0<-sum(Res_H0^2) + df2<-n-df1-ncol(cof) + Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1 + pval<-pf(Ftest,df1,df2,lower.tail=FALSE) + list(out=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]), + data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),cof=colnames(cof)[-1])} else {cat('error \n')}} +opt_extBIC_out<-bestmodel_pvals(opt_extBIC) +opt_mbonf_out<-bestmodel_pvals(opt_mbonf) + +list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)} + +plot_step_table<-function(x,type){ + if (type=='h2') {plot(x$step_table$step,x$step_table$h2,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='h2') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='maxpval'){plot(x$step_table$step,-log10(x$step_table$maxpval),type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='-log10(max_Pval)') + abline(h=x$bonf_thresh,lty=2) + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='BIC'){plot(x$step_table$step,x$step_table$BIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='BIC') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='extBIC'){plot(x$step_table$step,x$step_table$extBIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='EBIC') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else {cat('error! \n argument type must be one of h2, maxpval, BIC, extBIC')}} + +plot_step_RSS<-function(x){ + op<-par(mar=c(5, 5, 2, 2)) + plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='brown1', border=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='forestgreen', border=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='dodgerblue4', border=0) + abline(v=(nrow(x$step_table)/2-0.5),lty=2) + par(op)} + +plot_GWAS<-function(x) { + output_<-x$out[order(x$out$Pos),] + output_ok<-output_[order(output_$Chr),] + + maxpos<-c(0,cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200))) + plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2)) +# plot_col<-c('blue','darkgreen','red','cyan','purple') + size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x + a<-rep(maxpos[1],size[1]) + b<-rep(plot_col[1],size[1]) + for (i in 2:max(unique(output_ok$Chr))){ + a<-c(a,rep(maxpos[i],size[i])) + b<-c(b,rep(plot_col[i],size[i]))} + + output_ok$xpos<-output_ok$Pos+a + output_ok$col<-b + output_ok$col[output_ok$SNP %in% x$cof]<-'red' + + d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2 + + plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome') + axis(1,tick=FALSE,at=d,labels=c(1:max(unique(output_ok$Chr)))) + abline(h=x$bonf_thresh,lty=3,col='black')} + +plot_region<-function(x,chrom,pos1,pos2){ + region<-subset(x$out,Chr==chrom & Pos>=pos1 & Pos <=pos2) + region$col<- if (chrom %% 2 == 0) {'gray60'} else {'gray10'} + region$col[which(region$SNP %in% x$cof)]<-'red' + plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab='-log10(pval)',col=region$col,xlim=c(pos1,pos2)) + abline(h=x$bonf_thresh,lty=3,col='black')} + + +plot_fwd_GWAS<-function(x,step,snp_info,pval_filt) { + stopifnot(step<=length(x$pval_step)) + output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + +plot_fwd_region<-function(x,step,snp_info,pval_filt,chrom,pos1,pos2) { + stopifnot(step<=length(x$pval_step)) + output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + + +plot_opt_GWAS<-function(x,opt,snp_info,pval_filt) { + if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + else {cat('error! \n opt must be extBIC or mbonf')}} + +plot_opt_region<-function(x,opt,snp_info,pval_filt,chrom,pos1,pos2) { + if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + else {cat('error! \n opt must be extBIC or mbonf')}} + + +qqplot_fwd_GWAS<-function(x,nsteps){ + stopifnot(nsteps<=length(x$pval_step)) + e<--log10(ppoints(nrow(x$pval_step[[1]]$out))) + ostep<-list() + ostep[[1]]<--log10(sort(x$pval_step[[1]]$out$pval)) + for (i in 2:nsteps) {ostep[[i]]<--log10(sort(x$pval_step[[i]]$out$pval))} + + maxp<-ceiling(max(unlist(ostep))) + + plot(e,ostep[[1]],type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp)) + abline(0,1,col="dark grey") + + for (i in 2:nsteps) { + par(new=T) + plot(e,ostep[[i]],type='b',pch=20,cex=0.8,col=i,axes='F',xlab='',ylab='',xlim=c(0,max(e)+1),ylim=c(0,maxp))} + legend(0,maxp,lty=1,pch=20,col=c(1:length(ostep)),paste(c(0:(length(ostep)-1)),'cof',sep=' ')) +} + +qqplot_opt_GWAS<-function(x,opt){ + if (opt=='extBIC') { + e<--log10(ppoints(nrow(x$opt_extBIC$out))) + o<--log10(sort(x$opt_extBIC$out$pval)) + maxp<-ceiling(max(o)) + plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to extBIC')) + abline(0,1,col="dark grey")} + else if (opt=='mbonf') { + e<--log10(ppoints(nrow(x$opt_mbonf$out))) + o<--log10(sort(x$opt_mbonf$out$pval)) + maxp<-ceiling(max(o)) + plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to mbonf')) + abline(0,1,col="dark grey")} + else {cat('error! \n opt must be extBIC or mbonf')}} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/source_library/mlmm1.r Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,486 @@ +############################################################################################################################################## +###MLMM - Multi-Locus Mixed Model +###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH +####### +# +##note: require EMMA +#library(emma) +#source('emma.r') +# +##REQUIRED DATA & FORMAT +# +#PHENOTYPE - Y: a vector of length m, with names(Y)=individual names +#GENOTYPE - X: a n by m matrix, where n=number of individuals, m=n umber of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names +#KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names +#each of these data being sorted in the same way, according to the individual name +# +##FOR PLOTING THE GWAS RESULTS +#SNP INFORMATION - snp_info: a data frame having at least 3 columns: +# - 1 named 'SNP', with SNP names (same as colnames(X)), +# - 1 named 'Chr', with the chromosome number to which belong each SNP +# - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to. +####### +# +##FUNCTIONS USE +#save this file somewhere on your computer and source it! +#source('path/mlmm.r') +# +###FORWARD + BACKWARD ANALYSES +#mygwas<-mlmm(Y,X,K,nbchunks,maxsteps) +#X,Y,K as described above +#nbchunks: an integer defining the number of chunks of to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory +#maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, +# however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. +# It's value must be specified as an integer >= 3 +# +###RESULTS +# +##STEPWISE TABLE +#mygwas$step_table +# +##PLOTS +# +##PLOTS FORM THE FORWARD TABLE +#plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC')) +# +##RSS PLOT +#plot_step_RSS(mygwas) +# +##GWAS MANHATTAN PLOTS +# +#FORWARD STEPS +#plot_fwd_GWAS(mygwas,step,snp_info,pval_filt) +#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +# +#OPTIMAL MODELS +#Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria +# +#plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +# +##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST +#plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2) +#step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +#chrom is an integer specifying the chromosome on which the region of interest is +#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info +# +#plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2) +#snp_info as described above +#pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot +#chrom is an integer specifying the chromosome on which the region of interest is +#pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info +# +##QQPLOTS of pvalues +#qqplot_fwd_GWAS(mygwas,nsteps) +#nsteps=maximum number of forward steps to be displayed +# +#qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf')) +# +############################################################################################################################################## + +mlmm<-function(Y,X,K,nbchunks,maxsteps) { + +n<-length(Y) +m<-ncol(X) + +stopifnot(ncol(K) == n) +stopifnot(nrow(K) == n) +stopifnot(nrow(X) == n) +stopifnot(nbchunks >= 2) +stopifnot(maxsteps >= 3) + +#INTERCEPT + +Xo<-rep(1,n) + +#K MATRIX NORMALISATION + +K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K +rm(K) + +#step 0 : NULL MODEL +cof_fwd<-list() +cof_fwd[[1]]<-as.matrix(Xo) +colnames(cof_fwd[[1]])<-'Xo' + +mod_fwd<-list() +mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm) + +herit_fwd<-list() +herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve) + +RSSf<-list() +RSSf[[1]]<-'NA' + +RSS_H0<-list() +RSS_H0[[1]]<-'NA' + +df1<-1 +df2<-list() +df2[[1]]<-'NA' + +Ftest<-list() +Ftest[[1]]<-'NA' + +pval<-list() +pval[[1]]<-'NA' + +fwd_lm<-list() + +cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n') + +#step 1 : EMMAX + +M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[1]]) +fwd_lm[[1]]<-summary(lm(Y_t~0+cof_fwd_t)) +Res_H0<-fwd_lm[[1]]$residuals +Q_<-qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[2]]<-unlist(RSS) +RSS_H0[[2]]<-sum(Res_H0^2) +df2[[2]]<-n-df1-ncol(cof_fwd[[1]]) +Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1 +pval[[2]]<-pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE) + +cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])]) +colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1])) +mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm) +herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) + +cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n') + +#FORWARD + +for (i in 3:(maxsteps)) { +if (herit_fwd[[i-2]] < 0.01) break else { + +M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[i-1]]) +fwd_lm[[i-1]]<-summary(lm(Y_t~0+cof_fwd_t)) +Res_H0<-fwd_lm[[i-1]]$residuals +Q_ <- qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[i]]<-unlist(RSS) +RSS_H0[[i]]<-sum(Res_H0^2) +df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]]) +Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1 +pval[[i]]<-pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE) + +cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])]) +colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1])) +mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm) +herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)} +cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')} +rm(i) + +##gls at last forward step +M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]]) +fwd_lm[[length(mod_fwd)]]<-summary(lm(Y_t~0+cof_fwd_t)) + +Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals +Q_ <- qr.Q(qr(cof_fwd_t)) + +RSS<-list() +for (j in 1:(nbchunks-1)) { +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) +RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t)} +X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))]) +RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) +rm(X_t,j) + +RSSf[[length(mod_fwd)+1]]<-unlist(RSS) +RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2) +df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]]) +Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1 +pval[[length(mod_fwd)+1]]<-pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE) +rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) + +##get max pval at each forward step +max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm)) +max_pval_fwd[1]<-0 +for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])} +rm(i) + +##get the number of parameters & Loglikelihood from ML at each step +mod_fwd_LL<-list() +mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML) +for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)} +rm(i) + +cat('backward analysis','\n') + +##BACKWARD (1st step == last fwd step) + +dropcof_bwd<-list() +cof_bwd<-list() +mod_bwd <- list() +bwd_lm<-list() +herit_bwd<-list() + +dropcof_bwd[[1]]<-'NA' +cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]) +colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]] +mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm) +herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve) +M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_bwd_t<-crossprod(M,cof_bwd[[1]]) +bwd_lm[[1]]<-summary(lm(Y_t~0+cof_bwd_t)) + +rm(M,Y_t,cof_bwd_t) + +for (i in 2:length(mod_fwd)) { +dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))] +cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]) +colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]] +mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm) +herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve) +M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n))) +Y_t<-crossprod(M,Y) +cof_bwd_t<-crossprod(M,cof_bwd[[i]]) +bwd_lm[[i]]<-summary(lm(Y_t~0+cof_bwd_t)) +rm(M,Y_t,cof_bwd_t)} + +rm(i) + +##get max pval at each backward step +max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm)) +for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])} +max_pval_bwd[length(bwd_lm)]<-0 + +##get the number of parameters & Loglikelihood from ML at each step +mod_bwd_LL<-list() +mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML) +for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)} +rm(i) + +cat('creating output','\n') + +##Forward Table: Fwd + Bwd Tables +#Compute parameters for model criteria +BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)} +extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)} + +fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]] + ,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]])) +for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table, + data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]] + ,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))} + +rm(i) + +bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]] + ,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]])) +for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table, + data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]] + ,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))} + +rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd) + +fwdbwd_table<-rbind(fwd_table,bwd_table) + +#RSS for plot +mod_fwd_RSS<-vector() +mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2) +for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)} +mod_bwd_RSS<-vector() +mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2) +for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)} +expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]})) +h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS) +unexpl_RSS<-1-expl_RSS-h2_RSS +plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum)) + +#GLS pvals at each step +pval_step<-list() +pval_step[[1]]<-list(out=data.frame('SNP'=colnames(X),'pval'=pval[[2]]),cof='') +for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]), + data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),cof=colnames(cof_fwd[[i]])[-1])} + +#GLS pvals for best models according to extBIC and mbonf + +opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],] +opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],] +bestmodel_pvals<-function(model) {if(substr(model$step_,start=0,stop=3)=='fwd') { + pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') { + cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]] + mixedmod<-emma.REMLE(Y,cof,K_norm) + M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n))) + Y_t<-crossprod(M,Y) + cof_t<-crossprod(M,cof) + GLS_lm<-summary(lm(Y_t~0+cof_t)) + Res_H0<-GLS_lm$residuals + Q_ <- qr.Q(qr(cof_t)) + RSS<-list() + for (j in 1:(nbchunks-1)) { + X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) + RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) + rm(X_t)} + X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))]) + RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) + rm(X_t,j) + RSSf<-unlist(RSS) + RSS_H0<-sum(Res_H0^2) + df2<-n-df1-ncol(cof) + Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1 + pval<-pf(Ftest,df1,df2,lower.tail=FALSE) + list(out=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]), + data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),cof=colnames(cof)[-1])} else {cat('error \n')}} +opt_extBIC_out<-bestmodel_pvals(opt_extBIC) +opt_mbonf_out<-bestmodel_pvals(opt_mbonf) + +list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)} + +plot_step_table<-function(x,type){ + if (type=='h2') {plot(x$step_table$step,x$step_table$h2,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='h2') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='maxpval'){plot(x$step_table$step,-log10(x$step_table$maxpval),type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='-log10(max_Pval)') + abline(h=x$bonf_thresh,lty=2) + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='BIC'){plot(x$step_table$step,x$step_table$BIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='BIC') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else if (type=='extBIC'){plot(x$step_table$step,x$step_table$extBIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='EBIC') + abline(v=(nrow(x$step_table)/2-0.5),lty=2)} + else {cat('error! \n argument type must be one of h2, maxpval, BIC, extBIC')}} + +plot_step_RSS<-function(x){ + op<-par(mar=c(5, 5, 2, 2)) + plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='brown1', border=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='forestgreen', border=0) + polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='dodgerblue4', border=0) + abline(v=(nrow(x$step_table)/2-0.5),lty=2) + par(op)} + +plot_GWAS<-function(x) { + output_<-x$out[order(x$out$Pos),] + output_ok<-output_[order(output_$Chr),] + + maxpos<-c(0,cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200))) + plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2)) +# plot_col<-c('blue','darkgreen','red','cyan','purple') + size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x + a<-rep(maxpos[1],size[1]) + b<-rep(plot_col[1],size[1]) + for (i in 2:max(unique(output_ok$Chr))){ + a<-c(a,rep(maxpos[i],size[i])) + b<-c(b,rep(plot_col[i],size[i]))} + + output_ok$xpos<-output_ok$Pos+a + output_ok$col<-b + output_ok$col[output_ok$SNP %in% x$cof]<-'red' + + d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2 + + plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome') + axis(1,tick=FALSE,at=d,labels=c(1:max(unique(output_ok$Chr)))) + abline(h=x$bonf_thresh,lty=3,col='black') + + + if (length(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]) > 0) { + text(output_ok$xpos[-log10(output_ok$pval) > x$bonf_thresh], -log10(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]), output_ok$SNP[-log10(output_ok$pval) > x$bonf_thresh], pos=3, cex=0.7) + legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) + } else { + legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) + } +} + +plot_region<-function(x,chrom,pos1,pos2){ + region<-subset(x$out,Chr==chrom & Pos>=pos1 & Pos <=pos2) + region$col<- if (chrom %% 2 == 0) {'gray60'} else {'gray10'} + region$col[which(region$SNP %in% x$cof)]<-'red' + plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab='-log10(pval)',col=region$col,xlim=c(pos1,pos2)) + abline(h=x$bonf_thresh,lty=3,col='black')} + + +plot_fwd_GWAS<-function(x,step,snp_info,pval_filt) { + stopifnot(step<=length(x$pval_step)) + output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + +plot_fwd_region<-function(x,step,snp_info,pval_filt,chrom,pos1,pos2) { + stopifnot(step<=length(x$pval_step)) + output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + + +plot_opt_GWAS<-function(x,opt,snp_info,pval_filt) { + if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) + plot_GWAS(output)} + else {cat('error! \n opt must be extBIC or mbonf')}} + +plot_opt_region<-function(x,opt,snp_info,pval_filt,chrom,pos1,pos2) { + if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) + plot_region(output,chrom,pos1,pos2)} + else {cat('error! \n opt must be extBIC or mbonf')}} + + +qqplot_fwd_GWAS<-function(x,nsteps){ + stopifnot(nsteps<=length(x$pval_step)) + e<--log10(ppoints(nrow(x$pval_step[[1]]$out))) + ostep<-list() + ostep[[1]]<--log10(sort(x$pval_step[[1]]$out$pval)) + for (i in 2:nsteps) {ostep[[i]]<--log10(sort(x$pval_step[[i]]$out$pval))} + + maxp<-ceiling(max(unlist(ostep))) + + plot(e,ostep[[1]],type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp)) + abline(0,1,col="dark grey") + + for (i in 2:nsteps) { + par(new=T) + plot(e,ostep[[i]],type='b',pch=20,cex=0.8,col=i,axes='F',xlab='',ylab='',xlim=c(0,max(e)+1),ylim=c(0,maxp))} + legend(0,maxp,lty=1,pch=20,col=c(1:length(ostep)),paste(c(0:(length(ostep)-1)),'cof',sep=' ')) +} + +qqplot_opt_GWAS<-function(x,opt){ + if (opt=='extBIC') { + e<--log10(ppoints(nrow(x$opt_extBIC$out))) + o<--log10(sort(x$opt_extBIC$out$pval)) + maxp<-ceiling(max(o)) + plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to extBIC')) + abline(0,1,col="dark grey")} + else if (opt=='mbonf') { + e<--log10(ppoints(nrow(x$opt_mbonf$out))) + o<--log10(sort(x$opt_mbonf$out$pval)) + maxp<-ceiling(max(o)) + plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to mbonf')) + abline(0,1,col="dark grey")} + else {cat('error! \n opt must be extBIC or mbonf')}} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlmm/source_library/plot_MLMM.Ago.r Thu Jul 02 05:42:38 2015 -0400 @@ -0,0 +1,36 @@ +## fonction ########################################################################### +plot_MLMM.Ago<-function(x) { + output1 <-x$out[order(x$out$Pos),] + output_ok<-output1[order(output1$Chr),] + + maxpos<-c(0,cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200))) + plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2)) +# plot_col<-c('blue','darkgreen','red','cyan','purple') + size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x + a<-rep(maxpos[1],size[1]) + b<-rep(plot_col[1],size[1]) + for (i in 2:max(unique(output_ok$Chr))){ + a<-c(a,rep(maxpos[i],size[i])) + b<-c(b,rep(plot_col[i],size[i]))} + + output_ok$xpos<-output_ok$Pos+a + output_ok$col<-b + output_ok$col[output_ok$mk=='qtl']<-'cyan' + output_ok$col[output_ok$SNP %in% x$cof]<-'red' + + d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2 + + plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome') + axis(1,tick=FALSE,at=d,labels=c(1:max(unique(output_ok$Chr)))) + xline(output_ok$xpos[output_ok$mk=='qtl'], col='cyan', lwd=0.1) + abline(h=x$bonf_thresh,lty=3,col='black') + + + if (length(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]) > 0) { + text(output_ok$xpos[-log10(output_ok$pval) > x$bonf_thresh], -log10(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]), output_ok$SNP[-log10(output_ok$pval) > x$bonf_thresh], pos=3, cex=0.7) + legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) + } else { + legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) + } + +}