Mercurial > repos > dereeper > pangenome_explorer
view PanExplorer_workflow/R/micropan_rarefaction.R @ 1:032f6b3806a3 draft
Uploaded
author | dereeper |
---|---|
date | Thu, 30 May 2024 11:16:08 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/R library(micropan) library(dendextend) library("optparse") option_list = list( make_option(c("-f", "--file"), type="character", default=NULL, help="dataset file name", metavar="character"), make_option(c("-o", "--out"), type="character", default="out.txt", help="output file name [default= %default]", metavar="character"), make_option(c("-a", "--alpha"), type="character", default="heaps.tsv", help="Heaps output file name [default= %default]", metavar="character"), make_option(c("-p", "--pdf"), type="character", default="out.pdf", help="PDF output file name [default= %default]", metavar="character") ); opt_parser = OptionParser(option_list=option_list); opt = parse_args(opt_parser); if (is.null(opt$file)){ print_help(opt_parser) stop("At least one argument must be supplied (input file).\n", call.=FALSE) } if (is.null(opt$out)){ print_help(opt_parser) stop("At least one argument must be supplied (out file).\n", call.=FALSE) } if (is.null(opt$alpha)){ print_help(opt_parser) stop("At least one argument must be supplied (out file).\n", call.=FALSE) } if (is.null(opt$pdf)){ print_help(opt_parser) stop("At least one argument must be supplied (out file).\n", call.=FALSE) } # Loading a pan-matrix in this package #data(xmpl.panmat) mydata <- read.table(opt$file, header=TRUE,sep="\t", row.names="Gene") tmydata<-t(mydata) #xmpl.panmat rarefaction = rarefaction(tmydata, n.perm = 100) write.table( rarefaction, opt$out, row.names = FALSE, quote = FALSE, sep = '\t') # Estimating population openness h.est <- heaps(tmydata, n.perm = 100) write.table( h.est, opt$alpha, row.names = TRUE, quote = FALSE, sep = '\t') # If alpha < 1 it indicates an open pan-genome pdf(opt$pdf) library(ggplot2) library(tidyr) rarefaction %>% gather(key = "Permutation", value = "Clusters", -Genome) %>% ggplot(aes(x = Genome, y = Clusters, group = Permutation)) + geom_point() + stat_summary(aes(y = Clusters,group=1), fun=mean, colour="red", geom="line",group=1)