Mercurial > repos > dereeper > pgap
view PGAP-1.2.1/PGAP.pl @ 0:83e62a1aeeeb draft
Uploaded
author | dereeper |
---|---|
date | Thu, 24 Jun 2021 13:51:52 +0000 |
parents | |
children | 70b7a5270968 |
line wrap: on
line source
#!/usr/bin/perl use strict; use warnings; use Getopt::Long; ### programs from BLAST my $formatdb="formatdb"; my $blastall="blastall"; ### programs from mcl my $mcl="mcl"; ### programs from mafft my $mafft="mafft"; ### programs from PHYLIP my $seqboot="seqboot"; my $neighbor="neighbor"; my $consense="consense"; my $dnaml="dnaml"; my $dnadist="dnadist"; my $dnapars="dnapars"; my $count_tree=0; my $sampleSize=8000; # when calculate the pan-genome size, we will sample $sampleSize combinations # if the total combination number is larger than $sampleSize for specific genomes # Surely, the number of $sampleSize is, the larger, the better. # However, the larger the $sampleSize is, the more time would be consumed. # we suggest the range: 5000 ~ 20,000 ##################################################################### # DOn't modify the following code, unless you know their functions ##################################################################### my %opt=qw(); GetOptions(\%opt,"strains:s","input:s","output:s","cluster!","pangenome!","variation!","evolution!","function!","method:s","thread:i","score:f","evalue:f","coverage:f","local:f","global:f","identity:f","bootstrap:i","help|h!"); my @usage=qq( ====== Pan-Genome Analysis Pipeline (PGAP) ====== Version 1.2.1 Usage: perl PGAP.pl [Options] Options: --strains String Input strains nicknames, and join them with '+', for example: A+B+C --input String Input data directory --output String Result output directory --cluster Run homologous gene clustering --pangenome Run pan-genome analysis --variation Run homologous clusters variation analysis --evolution Run evolution analysis --function Run Function analysis --method String GF for GeneFamily method, and MP for MultiParanoid method for GF: fast, but not very accurate evalue, score, indentity, coverage are employed for MP: slow, but more accurate score, coverage, local, global are employed --thread Int Number of processors to use in blastall. [default:1] --score Int Minimum score in blastall. [default:40] --evalue Decimal Maximal E-value in blastall. [default:1e-10] --coverage Decimal Minimum alignment coverage for two homologous proteins. [default:0.5] --local Decimal Minimum local alignment overlap in MP method. [default:0.25] --global Decimal Minimum global alignment overlap in MP method. [default:0.5] --identity Decimal Minimum alignment indentity for two homologous proteins. [default:0.5] --bootstrap Int Bootstrap times for phylogenetics tree. [default:1] --h or help Display this message ); ############# specified variable ############# my $inputDIR; my $outputDIR; my $run_cluster; my $run_pangenome; my $run_variation; my $run_evolution; my $run_function; my $method=""; my $thread; my $score; my $identity; my $evalue; my $coverage; my $global; my $local; my $bootstrap; my %pep; my %nuc; my $spnum; my @clusters; my $Cluster; my @SpecieCombination; my @spID; my %genenum; my %aaAln; my %ntAln; my %cog; my %description; #my %aa4tree; ### AA sequence for Phylogenetic Tree my %nt4tree; ### nucleotide sequence for Phylogenetic Tree my @SNPPosition; ### SNP position my $dieMessage="You did not run PGAP.pl in the program directory\n"; my $section; ######### common temporary variable ############# my $i; my $j; my $line; my %tmpHash; my @tmp; my $tmp; my $key; my @row; my $inparacount; my $ClusterID; my $orth; my @content; my $clusterName; my @xdata; my @ydata; my @fit; my $fit_A; my $fit_A_interval; my $fit_B; my $fit_C; my $fit_C_interval; my $fit_Rsquare; #### check option my $opt_error=0; if ((scalar(keys %opt) ==0) or (exists($opt{"help"}))) { print join("\n",@usage)."\n"; exit; } ###################### public info ### strains name my @species; if (exists($opt{"strains"})) { @species=split(/\+/,$opt{"strains"}); $spnum=scalar(@species); }else { print "Please assign strains nick name!\n"; exit; } ### input data directory if (exists($opt{"input"})) { $inputDIR=$opt{"input"}; if ($inputDIR!~/\/$/) { $inputDIR=$inputDIR."/"; } }else { print "Please assign input data directory!\n\n"; exit; } ### output data directory if (exists($opt{"output"})) { $outputDIR=$opt{"output"}; if ($outputDIR!~/\/$/) { $outputDIR=$outputDIR."/"; } }else { print "Please assign result output directory!\n\n"; exit; } ###################### section info if (exists($opt{"cluster"})) { $run_cluster=1; }else { $run_cluster=0; } if (exists($opt{"pangenome"})) { $run_pangenome=1; }else { $run_pangenome=0; } if (exists($opt{"variation"})) { $run_variation=1; }else { $run_variation=0; } if (exists($opt{"evolution"})) { $run_evolution=1; }else { $run_evolution=0; } if (exists($opt{"function"})) { $run_function=1; }else { $run_function=0; } if ($run_cluster) { ### method if (exists($opt{"method"})) { $method=uc($opt{"method"}); if ($method!~/^GF$/ and $method!~/^MP$/) { print "Unknown method: ".$opt{"method"}."\n"; exit; } }else { print "Please assign the cluster method!\n\n"; exit; } ##thread if (exists($opt{"thread"})) { $thread=$opt{"thread"}; if ($thread==0) { print "please assign an applicable thread value.\n"; exit; } }else { $thread=1; } ##score if (exists($opt{"score"})) { $score=$opt{"score"}; if ($score<=0) { print "please assign an applicable score value.\n"; exit; } }else { $score=40; } if ($method eq "GF") { ###identity if (exists($opt{"identity"})) { $identity=$opt{"identity"}; if ($identity>1 or $identity<=0) { print "identity should be 0 ~ 1 \n"; exit; } }else { $identity=0.5; } ###evalue if (exists($opt{"evalue"})) { $evalue=$opt{"evalue"}; }else { $evalue=1e-10; } ###coverage if (exists($opt{"coverage"})) { $coverage=$opt{"coverage"}; if ($coverage>1 or $coverage<=0) { print "coverage should be 0 ~ 1 \n"; exit; } }else { $coverage=0.5; } } if ($method eq "MP") { ###global if (exists($opt{"global"})) { $global=$opt{"global"}; if ($global>1 or $global<=0) { print "global coverage should be 0 ~ 1 \n"; exit; } }else { $global=0.5; } ###local if (exists($opt{"local"})) { $local=$opt{"local"}; if ($local<=0) { print "local coverage should be 0 ~ [global coverage value] \n"; exit; } if ($local>$global) { print "local coverage should be less than global coverage!\n"; exit; } }else { $local=0.25; } } } if ($run_evolution) { if (exists($opt{"bootstrap"})) { $bootstrap=$opt{"bootstrap"}; if ($bootstrap<=0) { print "please assign an applicable bootstrap value.\n"; } }else { $bootstrap=1; } } print "Program begin at ".localtime()."\n"; print "The following are the parameters for current process:\n"; print "Strains: ".join(",",@species)."\n"; print "Input directory: $inputDIR\n"; print "Output directory: $outputDIR\n"; if ($run_cluster) { print "Cluster analysis: yes\n"; print " Method: $method\n"; print " Thread: $thread\n"; if ($method eq "GF") { print " E-value: $evalue\n"; print " Identity: $identity\n"; print " Coverage: $coverage\n"; print " Score: $score\n"; } if ($method eq "MP") { print " Local: $local\n"; print " Global: $global\n"; print " Score: $score\n"; } }else { print "Cluster analysis: no\n"; } if ($run_pangenome) { print "Pan-genome analysis: yes\n"; }else { print "Pan-genome analysis: no\n"; } if ($run_variation) { print "Variation analysis: yes\n"; }else { print "Variation analysis: no\n"; } if ($run_evolution) { print "Evolution analysis: yes\n"; print " Bootstrap: $bootstrap\n"; }else { print "Evolution analysis: no\n"; } if ($run_function) { print "Function analysis: yes\n"; }else { print "Function analysis: no\n"; } $section=$run_cluster.$run_pangenome.$run_variation.$run_evolution.$run_function; ############################################### # section 0) check input file and program ############################################### if (!(-e $outputDIR)) { system("mkdir $outputDIR"); } system("chmod +rw $outputDIR"); if (!(-w $outputDIR)) { print "There is no WRITE permission in $outputDIR\n"; exit; } @tmp=qw(); &CheckInputFile(\@species,$inputDIR,$section,$method,\@tmp); &CheckExtraProgram($section,$method,\@tmp); if (scalar(@tmp)>0) { open(R,">".$outputDIR."0.error.message"); print R join("",@tmp)."\n"; close(R); print "error!\nlog are saved in ${outputDIR}0.error.message\n"; exit; } ############################################ # section 1) cluster analysis ############################################ if ($run_cluster) { print "\n\n############################################\n"; print "# section 1) cluster analysis\n"; print "############################################\n\n\n"; #### cluster gene and return result to the array @clusters if ($method eq "MP") { print "Begin cluster gene with MP method ...\n"; &MP(); }else { print "Begin cluster gene with GF method ...\n"; &GF(); } #### output normal cluster format &FormatClusterOutPut(\@species,"${outputDIR}1.Orthologs_Cluster.txt",\@clusters); #### Retrieve cluster &RetrieveClusterFromFile("${outputDIR}1.Orthologs_Cluster.txt",\@clusters); ##### gene distribution in each strains %tmpHash=(); &GeneDistribution(\@clusters,\%tmpHash); open(R,">${outputDIR}1.Gene_Distribution_By_Conservation.txt"); print R "SharedBy_Strains\t".join("\t",@species)."\n"; for ($i=$spnum;$i>0;$i--) { print R $i; for ($j=0;$j<$spnum;$j++) { if (exists($tmpHash{$i."|".$j})) { print R "\t".$tmpHash{$i."|".$j}; }else { print R "\t0"; } } print R "\n"; } close(R); }else { print "Homologous gene clustering is skipped!\n"; } if ($run_pangenome) { print "\n\n############################################\n"; print "# section 2) Pan-genome analysis\n"; print "############################################\n\n\n"; #### Retrieve cluster &RetrieveClusterFromFile("${outputDIR}1.Orthologs_Cluster.txt",\@clusters); chomp(@clusters); #### convert file into 0-1 matrix for ($line=0;$line<@clusters;$line++) { @row=split(/\t/,$clusters[$line]); splice(@row,0,1); for ($i=0;$i<@row;$i++) { if ($row[$i] eq "-") { $row[$i]=0; }else { $row[$i]=1; } } $clusters[$line]=join("\t",@row); } #### fetch gene number of each strains for ($i=0;$i<$spnum;$i++) { open(F,"$inputDIR$species[$i].pep"); @tmp=<F>; close(F); @tmp=grep(/^>/,@tmp); $genenum{$species[$i]}=scalar(@tmp); } #### pan genome size and core genome size print "Deducing pan genome size and core genome size for each composition...\n\n"; open(PAN,">${outputDIR}2.PanGenome.Data.txt"); print PAN "ClusterConservation\tTotalGeneNumber\tPanGenome\tCoreGenome\n"; for ($i=1;$i<=scalar(@species);$i++) { #@SpecieCombination=&Combination(\@species,$i); #@SpecieCombination=&Combination($spnum,$i); if (&ChkCombinationValue($spnum,$i) !=0) ### transfer the array reference to the subroutine { &Combination($spnum,$i,\@SpecieCombination); ## if the combination number is less than sampleSize, then fecth all, else sample }else { &SampleCombination($spnum,$i,\@SpecieCombination); } foreach $key (@SpecieCombination) { ##### count total gene number in current combination $tmp=0; @spID=split(/\t/,$key); #### speices id in current combination foreach (@spID) { $tmp=$tmp+$genenum{$species[$_]}; } ##### scan pangenome and coregenome @tmp=split(/\t/,&PanGenomeNumber(\@spID)); print PAN "$i\t$tmp\t".join("\t",@tmp)."\n"; } } close(PAN); #### data fit #### for model A if ($spnum<3) { print "There are $spnum strains. For pan-genome function fitting, at least 3 strains data are required.\n"; }else { open(R,">${outputDIR}2.PanGenome.Profile.txt"); ##### genome number & pan-genome size @xdata=qw(); @ydata=qw(); &ReadData2Array("${outputDIR}2.PanGenome.Data.txt",\@xdata,0,\@ydata,2); &SumData(\@xdata,\@ydata,"mean"); ($fit_Rsquare, $fit_A, $fit_A_interval, $fit_B, $fit_C, $fit_C_interval)=&fit_model_A(\@xdata,\@ydata); print R "The relation bewteen genome number and pan-genome size\n\n"; print R "Function model: y=A*x**B +C \n"; print R "\ty denotes pan-genome size, x denotes genome number, and A, B, C are fitting parameters.\n\n"; print R "Fitting result:\n"; print R "\ty = $fit_A *x**$fit_B + $fit_C\n"; print R "\tR-square = $fit_Rsquare\n"; print R "\tA 95% confidence interval: ($fit_A - $fit_A_interval , $fit_A + $fit_A_interval)\n"; print R "\tC 95% confidence interval: ($fit_C - $fit_C_interval , $fit_C + $fit_C_interval)\n\n\n\n\n"; ##### total gene number & pan-genome size #@xdata=qw(); #@ydata=qw(); #&ReadData2Array("${outputDIR}2.PanGenome.Data.txt",\@xdata,1,\@ydata,2); #&SumDataByMedian(\@xdata,\@ydata); #($fit_Rsquare, $fit_A, $fit_B, $fit_C)=&fit_model_A(\@xdata,\@ydata); #print R "The relation bewteen total gene number and pan-genome size\n\n"; #print R "$fit_Rsquare, $fit_A, $fit_B, $fit_C\n"; #print R "\ty = $fit_A *x**$fit_B + $fit_C R-square = $fit_Rsquare\n"; #print R "\tx: total gene number\n"; #print R "\ty: pan-genome size\n\n\n\n\n"; ##### genome number & core genome @xdata=qw(); @ydata=qw(); &ReadData2Array("${outputDIR}2.PanGenome.Data.txt",\@xdata,0,\@ydata,3); &SumData(\@xdata,\@ydata,"mean"); ($fit_Rsquare, $fit_A, $fit_A_interval, $fit_B, $fit_C, $fit_C_interval)=&fit_model_B(\@xdata,\@ydata); print R "The relation bewteen genome number and core genome size\n\n"; print R "Function model: y=A*exp(B*x) +C \n"; print R "\ty denotes pan-genome size, x denotes genome number, and A, B, C are fitting parameters.\n\n"; print R "Fitting result:\n"; print R "\ty = $fit_A *exp($fit_B * x) + $fit_C R-square = $fit_Rsquare\n"; print R "\tR-square = $fit_Rsquare\n"; print R "\tA 95% confidence interval: ($fit_A - $fit_A_interval , $fit_A + $fit_A_interval)\n"; print R "\tC 95% confidence interval: ($fit_C - $fit_C_interval , $fit_C + $fit_C_interval)\n\n\n\n\n"; close(R); } } ############################################ # section 3) CDS variation analysis ############################################ if ($run_variation) { print "\n\n############################################\n"; print "# section 3) CDS variation analysis\n"; print "############################################\n\n\n"; #### Retrieve cluster &RetrieveClusterFromFile("${outputDIR}1.Orthologs_Cluster.txt",\@clusters); chomp(@clusters); ## protein system("rm -rf *.pep"); &PrepareFasta(\@species,$inputDIR,".pep"); ###prepare pep file system("cat *.pep > All.faa && rm -rf *.pep && mv All.faa All.pep"); &ReadSequenceInToHash("All.pep",\%pep); ## nucleic system("rm -rf *.nuc"); &PrepareFasta(\@species,$inputDIR,".nuc"); ###prepare nuc file system("cat *.nuc > All.ffn && rm -rf *.nuc && mv All.ffn All.nuc"); &ReadSequenceInToHash("All.nuc",\%nuc); ## scanning SNP %nt4tree=(); for ($i=0;$i<$spnum;$i++) { $nt4tree{"S".$i}=""; } open(VAR,">${outputDIR}3.CDS.variation.txt"); print VAR "ClusterID\tStrains_Number\tGene_Number\tPosition\taaType\tntType\tntProfile\tVariation type\n"; open(VA,">${outputDIR}3.CDS.variation.analysis.txt"); print VA "ClusterID\tInDel Base\tNonsynonymous mutation\tSynonymous mutation\n"; for ($line=0;$line<@clusters;$line++) { @row=split(/\t|\,/,$clusters[$line]); $ClusterID=$row[0]; splice(@row,0,1); @row=grep(/^S/,@row); if (scalar(@row) >=2) { open(PEP,">$ClusterID.pep"); open(NUC,">$ClusterID.nuc"); foreach $key (@row) { print PEP ">$key\n$pep{$key}\n"; print NUC ">$key\n$nuc{$key}\n"; } close(PEP); close(NUC); system("$mafft --quiet $ClusterID.pep > $ClusterID.pal"); #system("perl ./pal2nal.pl $ClusterID.pal $ClusterID.nuc -output fasta > $ClusterID.nal"); $tmp=&pal2nal("$ClusterID.pal","$ClusterID.nuc","$ClusterID.nal"); if ($tmp == 0) { system("rm -rf $ClusterID.*"); next; } @tmp=&DetectSNP(); if (scalar(@tmp)>0) { print VA $ClusterID."\t".&VarAnalysis(\@tmp)."\n"; print VAR join("",@tmp); ### core orthologs @row=split(/\t/,$clusters[$line]); splice(@row,0,1); if ((&CountGeneInCluster(join("\t",@row)) ==$spnum) and (&CountSpeicesInCluster(join("\t",@row)) == $spnum) ) { $count_tree++; %tmpHash=(); foreach (@row) { $tmpHash{$_}=""; } &RemoveHeadGap("$ClusterID.nal",\%tmpHash); &ExtractSNP4tree(\%tmpHash,\%nt4tree); } } system("rm -rf $ClusterID.*"); } } close(VAR); close(VA); open(R,">${outputDIR}3.CDS.variation.for.evolution.txt"); foreach $key (keys %nt4tree) { $_=$key; s/s//gi; print R ">$species[$_]\n$nt4tree{$key}\n"; } close(R); print $count_tree."\n\n"; ### system("rm All.nuc All.pep"); }else { print "CDS variation is skipped.\n"; } ############################################ # section 4) CDS variation analysis ############################################ if ($run_evolution) { #### Retrieve cluster &RetrieveClusterFromFile("${outputDIR}1.Orthologs_Cluster.txt",\@clusters); chomp(@clusters); ################## ## ## Distance based ## ################## ### caculate the distance between each two strains by cluster &ClusterProfil4Specie(\%tmpHash); # caculate Clusters profile for each specie &DistanceMatrix($spnum,\%tmpHash); # caculate distance matrix acoording to Clusters profile ###output distance open(DIST,">${outputDIR}4.Species_Distance_Clusters_Based.txt"); ###header printf DIST "%5d", $spnum; print DIST "\n"; foreach $i (0..($spnum-1)) { $key="sp".$i."sp"; printf DIST "%-10s",$key; foreach $j (0..($spnum-1)) { printf DIST " %8f",$tmpHash{$i."-".$j}; } print DIST "\n"; } close(DIST); %tmpHash=(); ### based on pan genome (distance) print "\nDraw pangenome based phylogenetic tree ...\n\n"; &PanBasedTree("${outputDIR}4.Species_Distance_Clusters_Based.txt","${outputDIR}4.PanBased"); ################## ## ## SNP based ## ################## %tmpHash=(); if (!(-e "${outputDIR}3.CDS.variation.for.evolution.txt")) { print "Variation in core orthologs cluster is not found from ${outputDIR}3.CDS.variation.for.evolution.txt.\n"; print "Maybe you have skipped CDS variation analysis.\n"; }else { &ReadSequenceInToHash("${outputDIR}3.CDS.variation.for.evolution.txt",\%tmpHash); open(R,">mlst.aln"); for ($i=0;$i<@species;$i++) { print R ">sp${i}sp\n".$tmpHash{$species[$i]}."\n"; } close(R); &fasta2phylip("mlst.aln","mlst.phylip"); system("rm -rf mlst.aln"); print "\nDraw SNP based phylogenetic tree ...\n\n"; &SNPBasedTree("mlst.phylip","${outputDIR}4.SNPBased"); system("rm -rf mlst.phylip") } ######## # replace speices name ######## opendir(DIR,"${outputDIR}"); @tmp=readdir(DIR); closedir(DIR); @tmp=grep(/^4/,@tmp); foreach $tmp (@tmp) { &ReplaceName(\@species,"${outputDIR}$tmp"); } }else { print "Evolution analysis is skipped.\n"; } ############################################ # section 4) Function analysis ############################################ if ($run_function) { #### Retrieve cluster &RetrieveClusterFromFile("${outputDIR}1.Orthologs_Cluster.txt",\@clusters); chomp(@clusters); #### prepare annotation file &PrepareTable(\@species,$inputDIR,".function"); ###prepare location file &ReadAnnotation(\@species,\%cog,\%description); #### assign function open(R,">${outputDIR}5.Orthologs_Cluster_Function.txt"); print R "ClusterID\tConservation_Level\tCOG\tDescription\n"; for ($i=0;$i<@clusters;$i++) { @row=split(/\t/,$clusters[$i]); $ClusterID=$row[0]; splice(@row,0,1); print R $ClusterID."\t".&CountSpeicesInCluster(join("\t",@row))."\t".&getCOG(\@row,\%cog)."\t".&getDescription(\@row,\%description)."\n"; } close(R); #### COG distribution ###Whole Clusters COG Distribution &outputCOGStatistic("${outputDIR}5.Orthologs_Whole_Cluster_COG_Distribution.txt",&scanCOG("${outputDIR}5.Orthologs_Cluster_Function.txt",$spnum,1)); ###Core Clusters COG Distribution &outputCOGStatistic("${outputDIR}5.Orthologs_Core_Cluster_COG_Distribution.txt",&scanCOG("${outputDIR}5.Orthologs_Cluster_Function.txt",$spnum,$spnum)); ###Dispensable Clusters COG Distribution &outputCOGStatistic("${outputDIR}5.Orthologs_Dispensable_Cluster_COG_Distribution.txt",&scanCOG("${outputDIR}5.Orthologs_Cluster_Function.txt",($spnum-1),2)); ###strains specifc Clusters COG Distribution &outputCOGStatistic("${outputDIR}5.Orthologs_specifc_Cluster_COG_Distribution.txt",&scanCOG("${outputDIR}5.Orthologs_Cluster_Function.txt",1,1)); system("rm -rf *.function"); }else { print "Function analysis is skipped.\n"; } sub outputCOGStatistic() { (my $file,my $subcogcount)=@_; my @cogcat=("J A K L B","D Y V T M N Z W U O","C G E F H I P Q","R S -"); my @cogdesc=("INFORMATION STORAGE AND PROCESSING","CELLULAR PROCESSES AND SIGNALING","METABOLISM","POORLY CHARACTERIZED"); my @subcogcat=qw(J A K L B D Y V T M N Z W U O C G E F H I P Q R S -); my @subcogdesc=("[J] Translation, ribosomal structure and biogenesis","[A] RNA processing and modification","[K] Transcription","[L] Replication, recombination and repair","[B] Chromatin structure and dynamics","[D] Cell cycle control, cell division, chromosome partitioning","[Y] Nuclear structure","[V] Defense mechanisms","[T] Signal transduction mechanisms","[M] Cell wall/membrane/envelope biogenesis","[N] Cell motility","[Z] Cytoskeleton","[W] Extracellular structures","[U] Intracellular trafficking, secretion, and vesicular transport","[O] Posttranslational modification, protein turnover, chaperones","[C] Energy production and conversion","[G] Carbohydrate transport and metabolism","[E] Amino acid transport and metabolism","[F] Nucleotide transport and metabolism","[H] Coenzyme transport and metabolism","[I] Lipid transport and metabolism","[P] Inorganic ion transport and metabolism","[Q] Secondary metabolites biosynthesis, transport and catabolism","[R] General function prediction only","[S] Function unknown","[-] Unclassified"); my %subcogdesc; my $key; my @cog; my $i; my $cognum; for ($i=0;$i<@subcogcat;$i++) { $subcogdesc{$subcogcat[$i]}=$subcogdesc[$i]; } open(R,">$file"); for ($i=0;$i<@cogcat;$i++) { $cognum=0; foreach $key (split(" ",$cogcat[$i])) { $cognum=$cognum+$$subcogcount{$key}; } print R $cogdesc[$i]." ( ".$cognum." )\n"; foreach $key (split(" ",$cogcat[$i])) { printf R "%-6d %s\n",$$subcogcount{$key},$subcogdesc{$key}; } print R "\n"; } close(R); } sub scanCOG() { (my $file,my $max_orth,my $min_orth)=@_; my @row; my @subcogcat=qw(J A K L B D Y V T M N Z W U O C G E F H I P Q R S -); my %subcogcount; my $cog; my $key; foreach $key (@subcogcat) { $subcogcount{$key}=0; } @subcogcat=qw(J A K L B D Y V T M N Z W U O C G E F H I P Q R S); open(F,"$file"); $_=<F>; while (<F>) { @row=split(/\t/,$_); if ($row[1]>=$min_orth and $row[1]<=$max_orth) { if ($row[2] eq "-") { $subcogcount{"-"}++; }else { $_=uc($row[2]); s/COG//gi; $cog=$_; foreach $key (@subcogcat) { if ($cog=~/$key/) { $subcogcount{$key}++; } } } } } close(F); return \%subcogcount; } sub getCOG() { (my $data,my $coghash)=@_; my $cog=""; my @cog; my $key; my %hash; my @gene=split(/\t|\,/,join("\t",@$data)); @gene=grep(/^S/,@gene); foreach $key (@gene) { if (($$coghash{$key} ne "-") and ($$coghash{$key} ne "")) { $cog=$cog.",".$$coghash{$key}; } } @cog=split(/,/,$cog); foreach $cog (@cog) { if ($cog ne "") { $hash{$cog}=1; } } $cog=join(",",(keys %hash)); if ($cog eq "") { $cog="-"; } return $cog; } sub getDescription() { (my $data,my $deschash)=@_; my $desc=""; my $key; my @gene=split(/\t|\,/,join("\t",@$data)); @gene=grep(/^S/,@gene); foreach $key (@gene) { if ( ($$deschash{$key} ne "") and ($$deschash{$key} ne "-") and ($$deschash{$key}!~/hypothetical/)) { $desc=$$deschash{$key}; } } if ($desc eq "") { $desc="hypothetical protein"; } return $desc; } sub ReadAnnotation() { (my $species,my $cog,my $description)=@_; my $i; my @row; for ($i=0;$i<@$species;$i++) { open(F,"$$species[$i].function"); while (<F>) { chomp($_); @row=split(/\t/,$_); if (scalar(@row)>=2) { $$cog{$row[0]}=$row[1]; }else { $$cog{$row[0]}="-"; } if (scalar(@row)>=3) { $$description{$row[0]}=$row[2]; }else { $$description{$row[0]}="hypothetical protein"; } } close(F); } } sub SNPBasedTree() { (my $infile,my $outfileprefix)=@_; my $tmpin=$infile; my $tmpout; #### boootstrap print "\n#### seqboot ...\n\n"; open(R,">seqboot.cmd"); #print R "$tmpin\n"; print R "R\n"; print R "$bootstrap\n"; print R "Y\n"; print R "1\n"; close(R); system("cp $tmpin infile"); system("$seqboot < seqboot.cmd"); system("mv outfile 100dnaseq"); system("rm -rf infile"); system("rm seqboot.cmd"); # 100dnasseq #### dnaml print "\n#### dnaml ...\n\n"; open(R,">dnaml.cmd"); #print R "100dnaseq\n"; print R "T\n"; print R "25\n"; if ($bootstrap>1) { print R "M\n"; print R "D\n"; #print R "100\n"; print R "$bootstrap\n"; print R "1\n"; # Random number seed (must be odd)? print R "5\n"; # Number of times to jumble? } print R "Y\n"; close(R); system("cp 100dnaseq infile"); system("$dnaml < dnaml.cmd"); system("rm -rf outfile"); system("rm -rf infile"); system("mv outtree 100dnaseqtree"); # 100dnaseq, 100dnaseqtree #### consense print "\n#### dnaml consense ...\n\n"; open(R,">consense.cmd"); #print R "100dnaseqtree\n"; print R "Y\n"; close(R); system("cp 100dnaseqtree intree"); system("$consense < consense.cmd"); system("mv outfile ${outfileprefix}.ML.outfile"); system("mv outtree ${outfileprefix}.ML.tree"); system("rm -rf infile"); system("rm -rf 100dnaseqtree"); # 100dnaseq #### dnadist print "\n#### dnadist ...\n\n"; open(R,">dnadist.cmd"); #print R "100dnaseq\n"; print R "T\n"; print R "25\n"; if ($bootstrap>1) { print R "M\n"; print R "D\n"; #print R "100\n"; print R "$bootstrap\n"; } print R "Y\n"; close(R); system("cp 100dnaseq infile"); system("$dnadist < dnadist.cmd"); system("rm -rf 100dnaseq"); system("rm -rf infile"); system("mv outfile 100dnadist"); # 100dnadist #### Neighbor-joining tree print "\n#### Neighbor-joining ...\n\n"; open(R,">NJ.cmd"); if ($bootstrap>1) { #print R "100dnadist\n"; print R "M\n"; #print R "100\n"; print R "$bootstrap\n"; print R "1\n"; } print R "Y\n"; close(R); system("cp 100dnadist infile"); system("$neighbor < NJ.cmd"); system("mv outtree 100dnadistNJtree"); system("rm outfile"); system("rm -rf infile"); system("rm -rf NJ.cmd"); # 100dnadist,100dnadistNJtree #### NJ-consense print "\n#### NJ-consense ...\n\n"; open(R,">NJ-consense.cmd"); #print R "100dnadistNJtree\n"; print R "Y\n"; close(R); system("cp 100dnadistNJtree intree"); system("$consense < NJ-consense.cmd"); system("mv outfile ${outfileprefix}.Neighbor-joining.outfile"); system("mv outtree ${outfileprefix}.Neighbor-joining.tree"); system("rm -rf NJ-consense.cmd"); system("rm -rf intree"); system("rm -rf 100dnadistNJtree"); #### UPGMA tree print "\n#### UPGMA ...\n\n"; open(R,">UPGMA.cmd"); #print R "100dnadist\n"; print R "N\n"; if ($bootstrap>1) { print R "M\n"; #print R "100\n"; print R "$bootstrap\n"; print R "1\n"; } print R "Y\n"; close(R); system("cp 100dnadist infile"); system("$neighbor < UPGMA.cmd"); system("mv outtree 100dnadistUPGMAtree"); system("rm -rf outfile"); system("rm -rf infile"); system("rm -rf UPGMA.cmd"); #### UPGMA-consense print "\n#### UPGMA-consense ...\n\n"; open(R,">UPGMA-consense.cmd"); #print R "100dnadistUPGMAtree\n"; print R "Y\n"; close(R); system("cp 100dnadistUPGMAtree intree"); system("$consense < UPGMA-consense.cmd"); system("mv outfile ${outfileprefix}.UPGMA.outfile"); system("mv outtree ${outfileprefix}.UPGMA.tree"); system("rm -rf UPGMA-consense.cmd"); system("rm -rf 100dnadistUPGMAtree"); system("rm -rf intree"); ###CLEAN TMP FILE system("rm -rf *.cmd"); system("rm -rf 100dnadist"); } sub PanBasedTree() { (my $infile,my $outfileprefix)=@_; my $tmpin; my $tmpout; $tmpin=$infile; #### Neighbor-joining tree open(R,">NJ.cmd"); #print R "$tmpin\n"; print R "Y\n"; close(R); system("cp $tmpin infile"); system("$neighbor < NJ.cmd"); system("mv outfile ${outfileprefix}.Neighbor-joining.outfile"); system("mv outtree ${outfileprefix}.Neighbor-joining.tree"); system("rm -rf NJ.cmd"); system("rm -rf infile"); #### UPGMA tree open(R,">UPGMA.cmd"); #print R "$tmpin\n"; print R "N\n"; print R "Y\n"; close(R); system("cp $tmpin infile"); system("$neighbor < UPGMA.cmd"); system("mv outfile ${outfileprefix}.UPGMA.outfile"); system("mv outtree ${outfileprefix}.UPGMA.tree"); system("rm -rf UPGMA.cmd"); system("rm -rf infile"); ###CLEAN TMP FILE system("rm -rf *.cmd"); } sub DistanceMatrix() { (my $spnum,my $hash)=@_; my $i; my $j; my $k; my $dist; my $ref; my $query; foreach $i (0..($spnum-1)) { foreach $j ($i..($spnum-1)) { $ref=$$hash{$i}; $query=$$hash{$j}; $dist=0; for ($k=0;$k<length($ref);$k++) { if (substr($ref,$k,1) ne substr($query,$k,1)) { $dist++; } } $$hash{$i."-".$j}=$dist; $$hash{$j."-".$i}=$dist; } } } sub ClusterProfil4Specie { (my $hash)=@_; my @row; my $i; foreach (0..($spnum-1)) #initialization Hash { $$hash{$_}=""; } foreach (@clusters) { @row=split(/\t/,$_); splice(@row,0,1); if (&CountSpeicesInCluster(join("\t",@row))>1) { for ($i=0;$i<@row;$i++) { if ($row[$i] eq "-") { $$hash{$i}=$$hash{$i}."0"; }else { $$hash{$i}=$$hash{$i}."1"; } } } } } # &ExtractSNP4tree(\%tmpHash,\%nt4tree); sub ExtractSNP4tree() { (my $hash,my $nt4treeRef)=@_; my $key; my @row; my $i; my $len; my @tribases; foreach $key (keys %$hash) { $$hash{substr($key,0,index($key,"G"))}=$$hash{$key}; delete($$hash{$key}); } for ($i=0;$i<$spnum;$i++) { $nt4tree{"S".$i}=$nt4tree{"S".$i}.$$hash{"S".$i}; } } =pod sub ExtractSNP4tree() { (my $hash,my $nt4treeRef)=@_; my $key; my @row; my $i; my $len; my @tribases; foreach $key (keys %$hash) { $$hash{substr($key,0,index($key,"G"))}=$$hash{$key}; delete($$hash{$key}); } @_=(keys %$hash); $len=length($_[0]); for ($j=0;3*$j<$len;$j++) { ##### scanning each codon for ($i=0;$i<$spnum;$i++) { $tribases[$i]=substr($$hash{"S".$i},3*$j,3); } ##### checking each codon if (&IsTheSame(@tribases) ==0) { for ($i=0;$i<@tribases;$i++) { $nt4tree{"S".$i}=$nt4tree{"S".$i}.$tribases[$i]; } } } } =cut sub pal2nal() { (my $pal,my $nuc, my $nal)=@_; my %aaAln=(); my %ffn=(); my %ntAln=(); my %nt; my $dna; my $nt; my $key; my $flag=1; my $i=0; my $j; ### read protein aligment result &ReadAlignmentToHash("$pal",\%aaAln); ### read nt sequences &ReadSequenceInToHash("$nuc",\%ffn); foreach $key (keys %ffn) { $dna=$ffn{$key}; #if (int(length($nt{$key})/3)*3 ne length($nt{$key})) if (int(length($dna)/3)*3 ne length($dna)) { $flag=0; print "The length of nucleotide sequence is not 3 integer times.\n"; last; }else { for ($i=0;$i<(length($dna)/3);$i++) { $nt{$key."|".$i}=substr($dna,$i*3,3); } } } if ($flag==0) { return 0; }else { foreach $key (keys %aaAln) ### replace aa with corresponding nt { $nt=""; $i=0; for ($j=0;$j<length($aaAln{$key});$j++) { if (substr($aaAln{$key},$j,1) eq "-") { $nt=$nt."---"; }else { $nt=$nt.$nt{$key."|".$i}; $i++; } } $ntAln{$key}=$nt; } ### output open(R,">$nal"); foreach (keys %ntAln) { print R ">$_\n".$ntAln{$_}."\n"; } close(R); return 1; } } sub DetectSNP() { my %faa; my %ffn; my @row; my $count_gene; my $count_sp; my @genelist; my $i; my $j; my $pepalnlen; my @cdsvar=qw(); my $cdi=0; my @tribases; my @bases; my @aa; ### fetch gene list open(F,"$ClusterID.pep"); @genelist=<F>; close(F); @genelist=grep(/^>/,@genelist); chomp(@genelist); $_=join("\t",@genelist); s/>//g; @genelist=split(/\t/,$_); ### count gene number and species number @row=split(/\t/,$clusters[$ClusterID-1]); splice(@row,0,1); $count_sp=&CountSpeicesInCluster(join("\t",@row)); $count_gene=&CountGeneInCluster(join("\t",@row)); ### read alignment sequences &ReadAlignmentToHash("$ClusterID.pal",\%faa); &ReadAlignmentToHash("$ClusterID.nal",\%ffn); @_=(keys %faa); $pepalnlen=length($faa{$_[0]}); ### scan SNP for ($i=1;$i<=$pepalnlen;$i++) { @tmp=qw(); @tribases=qw(); for ($j=0;$j<@genelist;$j++) ### fetch triplet codon { $tribases[$j]=substr($ffn{$genelist[$j]},3*($i-1),3); } if (&IsTheSame(@tribases) ==0) ### if triplet codon is not consistent { @aa=qw(); for ($j=0;$j<@genelist;$j++) { $aa[$j]=substr($faa{$genelist[$j]},($i-1),1); } if (&IsTheSame(@aa) ==0) ### aa is not consistent { if (join("",@aa) =~/-/) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".$i."\t".&CharType(\@aa)."\t-\t-\tInDel\n"; }else { #### base 1 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1),1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.1)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tNonsynonymous mutation\n"; } #### base 2 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1)+1,1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.2)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tNonsynonymous mutation\n"; } #### base 3 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1)+2,1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.3)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tNonsynonymous mutation\n"; } } }else { #### base 1 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1),1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.1)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tSynonymous mutation\n"; } #### base 2 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1)+1,1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.2)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tSynonymous mutation\n"; } #### base 3 for ($j=0;$j<@genelist;$j++) { $bases[$j]=substr($ffn{$genelist[$j]},3*($i-1)+2,1); } if (&IsTheSame(@bases) ==0) { $cdsvar[$cdi++]=$ClusterID."\t".$count_sp."\t".$count_gene."\t".($i+0.3)."\t".&CharType(\@aa)."\t".&CharType(\@bases)."\t".join("",@bases)."\tSynonymous mutation\n"; } } } } return @cdsvar; } sub VarAnalysis() { (my $data)=@_; my @data=@$data; my $indel=0; my $syn=0; my $nonsyn=0; my @tmp; $indel=scalar(grep(/InDel$/,@data)); $nonsyn=scalar(grep(/Nonsynonymous mutation$/,@data));; $syn=scalar(grep(/Synonymous mutation$/,@data)); return "$indel\t$nonsyn\t$syn"; } sub CharType() { (my $str)=@_; my %hash; my @data=@$str; foreach (@data) { $hash{$_}=1; } return join(",",(keys %hash)); } sub IsTheSame() { (my @data)=@_; my %hash; foreach (@data) { $hash{$_}=1; } if (scalar(keys %hash) ==1) { return 1; }else { return 0; } } sub FormatClusterOutPut() { (my $speices,my $file,my $cluster)=@_; my @row; my $gid=1; my $key; my %hash; my $gene; my @tmp; my $i; my $j; open(R,">$file"); print R "ClutserID\t".join("\t",@$speices)."\n"; foreach $key (@$cluster) { @row=split(/\t/,$key); for ($i=0;$i<@row;$i++) { if ($row[$i] ne "-") { @tmp=split(/,/,$row[$i]); for ($j=0;$j<@tmp;$j++) { $_=$tmp[$j]; s/^S[0-9]+G//; $tmp[$j]=$_; } $row[$i]=join(",",@tmp); } } print R $gid."\t".join("\t",@row)."\n"; $gid++; } close(R); } sub RetrieveClusterFromFile() { (my $file,my $clusters)=@_; my @content; my @row; my $spid; my $line=0; my $i=0; my $j; my @tmp; open(F,$file) or die "Could open $file\n"; @content=<F>; close(F); splice(@content,0,1); chomp(@content); foreach (@content) { @row=split(/\t/,$_); $$clusters[$line]=$row[0]; splice(@row,0,1); for ($i=0;$i<@row;$i++) { if ($row[$i] ne "-") { @tmp=split(/,/,$row[$i]); for ($j=0;$j<@tmp;$j++) { $tmp[$j]="S${i}G".$tmp[$j]; } $row[$i]=join(",",@tmp); } } $$clusters[$line]=$$clusters[$line]."\t".join("\t",@row)."\n"; $line++; } } sub GeneDistribution() { (my $clusters,my $hash)=@_; my @row; my $spid; my $orth; my $key; foreach (@$clusters) { @row=split(/\t/,$_); splice(@row,0,1); $orth=&CountSpeicesInCluster(join("\t",@row)); @row=split(/\t|\,/,join("\t",@row)); foreach $key (@row) { if ($key ne "-") { $spid=substr($key,1,(index($key,'G')-1)); ###extract strains id if (exists($$hash{$orth."|".$spid})) { $$hash{$orth."|".$spid}++; }else { $$hash{$orth."|".$spid}=1; } } } } } sub CountSpeicesInCluster() { (my $str)=@_; chomp($str); my @list=split(/\t/,$str); my $key; my $count=0; foreach $key (@list) { if ($key ne "-") { $count++; } } return $count; } sub CountGeneInCluster() { (my $str)=@_; chomp(); my @list=split(/\t|\,/,$str); my $key; my $count=0; foreach $key (@list) { if ($key ne "-") { $count++; } } return $count; } sub GF() { &PrepareFasta(\@species,$inputDIR,".pep"); ###prepare pep file system("cat ".join(".pep ",@species).".pep > All.pep"); system("grep '>' All.pep > genelist"); system("$formatdb -p T -i All.pep"); system("$blastall -p blastp -i All.pep -d All.pep -M BLOSUM45 -m9 -e $evalue -o All.blastp -a $thread"); system("perl ./Blast_Filter.pl All.blastp All.pep $coverage $identity $score | $mcl - --abc -I 2.0 -o All.cluster"); &FormatCluster("All.cluster","genelist",$spnum,\@clusters); #system("rm -rf *.pep* All.blastp All.cluster genelist"); } sub MP() { # (my $species,my $inputDIR,my $thread,my $evalue,my $score,my $coverage,my $identity)=@_; my $i; my $j; &PrepareFasta(\@species,$inputDIR,".pep"); ###prepare pep file system("cat ".join(".pep ",@species).".pep > All.pep"); system("grep '>' All.pep > genelist"); system("rm -rf All.pep"); for ($i=0;$i<$spnum;$i++) { for ($j=$i+1;$j<$spnum;$j++) { system("perl ./inparanoid.pl $blastall $thread $formatdb $score $global $local $species[$i].pep $species[$j].pep"); } } system("perl ./multiparanoid.pl -species ".join(".pep+",@species).".pep -unique 1"); ###convert the MP result to table list based on gene &MP_Result_to_Table("MP.Cluster","All.cluster"); &FormatCluster("All.cluster","genelist",$spnum,\@clusters); system("rm -rf sqltable.* *.pep* MP.Cluster genelist"); } sub fasta2phylip() { (my $input,my $output)=@_; use Bio::AlignIO; my $inputfilename = "10.aln"; my $in= Bio::AlignIO->new(-file => $input , -format => 'fasta'); my $out = Bio::AlignIO->new(-file => ">$output" , -format => 'phylip'); while ( my $aln = $in->next_aln() ) { $out->write_aln($aln); } } sub RemoveHeadGap() { (my $nal,my $hash)=@_; my %aln; my $key; my $gaplength=0; my $len1; my $len2; &ReadSequenceInToHash("$nal",\%aln); foreach $key (keys %aln) { $len1=length($aln{$key}); $_=$aln{$key}; s/^-+//; $len2=length($_); if (($len1-$len2)>$gaplength) { $gaplength=$len1-$len2; } } foreach $key (keys %aln) { $$hash{$key}=$$hash{$key}.substr($aln{$key},$gaplength,(length($aln{$key})-$gaplength)); } } sub PrepareFasta() { (my $species,my $inputDIR,my $extention)=@_; my $sp; my $file; my $i; my %hash; my $key; for ($i=0;$i<@$species;$i++) { $file=$inputDIR.$$species[$i].$extention; %hash=(); &ReadSequenceInToHash($file,\%hash); open(R,">$$species[$i]${extention}") or die "Could write into $file\n"; foreach $key (keys %hash) { print R ">S${i}G$key\n"; print R $hash{$key}."\n"; } close(R); } } sub PrepareTable() { (my $species,my $inputDIR,my $extention)=@_; my @content; my $i; my @row; my $file; for ($i=0;$i<@$species;$i++) { $file=$inputDIR.$$species[$i].$extention; open(F,$file) or die "Could open $file\n"; @content=<F>; close(F); chomp(@content); open(R,">$$species[$i]${extention}") or die "Could write into $file\n"; foreach (@content) { @row=split(/\t/,$_); $row[0]="S${i}G$row[0]"; if ($extention eq ".location") { $row[0]=$row[0]."\t".$row[0]; } print R join("\t",@row)."\n"; } close(R); } } sub CheckExtraProgram { #(my $section, my $method, my $tmparray)=@_; my @error; my $ei=0; #####cluster gene if (substr($section,0,1) eq "1") { ###MP: blastall formatdb ###GF: blastall formatdb mcl if (!(-e $formatdb)) { $error[$ei++]="formatdb is not found at $formatdb\n"; } if (!(-X $formatdb)) { $error[$ei++]="there is not premission to execute $formatdb\n"; } if (!(-e $blastall)) { $error[$ei++]="blastall is not found at $blastall\n"; } if (!(-X $blastall)) { $error[$ei++]="there is not premission to execute $blastall\n"; } if ($method eq "GF") { if (!(-e $mcl)) { $error[$ei++]="mcl is not found at $mcl\n"; } if (!(-X $mcl)) { $error[$ei++]="there is not premission to execute $mcl\n"; } } } #####CDS variation if (substr($section,2,1) eq "1") { if (!(-e $mafft)) { $error[$ei++]="mafft is not found at $mafft\n"; } if (!(-X $mafft)) { $error[$ei++]="there is not premission to execute $mafft\n"; } } #####CDS variation if (substr($section,3,1) eq "1") { if (!(-e $mafft)) { $error[$ei++]="mafft is not found at $mafft\n"; } if (!(-X $mafft)) { $error[$ei++]="there is not premission to execute $mafft\n"; } } #####Evolution analysis if (substr($section,3,1) eq "1") { if (-e $seqboot) { $error[$ei++]="there is not premission to execute $seqboot\n" if(!(-X $seqboot)); }else { $error[$ei++]="seqboot is not found at $seqboot\n"; } if (-e $dnaml) { $error[$ei++]="there is not premission to execute $dnaml\n" if(!(-X $dnaml)); }else { $error[$ei++]="dnaml is not found at $dnaml\n"; } if (-e $dnadist) { $error[$ei++]="there is not premission to execute $dnadist\n" if(!(-X $dnadist)); }else { $error[$ei++]="dnadist is not found at $dnadist\n"; } if (-e $neighbor) { $error[$ei++]="there is not premission to execute $neighbor\n" if(!(-X $neighbor)); }else { $error[$ei++]="neighbor is not found at $neighbor\n"; } if (-e $consense) { $error[$ei++]="there is not premission to execute $consense\n" if(!(-X $consense)); }else { $error[$ei++]="consense is not found at $consense\n"; } if (-e $dnapars) { $error[$ei++]="there is not premission to execute $dnapars\n" if(!(-X $dnapars)); }else { $error[$ei++]="dnapars is not found at $dnapars\n"; } } #@$tmparray=(@$tmparray,@error); @tmp=(@tmp,@error); } sub CheckInputFile() { (my $species,my $inputDIR,my $section,my $method,my $tmparray)=@_; ####cluster if (substr($section,0,1) eq "1") { if ($method eq "MM") { @$tmparray=(@$tmparray,&chk2SEQ($species,$inputDIR)); ### check pep and nuc @$tmparray=(@$tmparray,&chktab($species,$inputDIR,".location"));### chk pep nuc location }else { @$tmparray=(@$tmparray,&chk1SEQ($species,$inputDIR)); } } ###CDS variation if (substr($section,2,1) eq "1") { @$tmparray=(@$tmparray,&chk2SEQ($species,$inputDIR)); } ###function analysis if (substr($section,4,1) eq "1") { @$tmparray=(@$tmparray,&chktab($species,$inputDIR,".function")); } } sub chk1SEQ() { (my $species,my $inputDIR)=@_; my @error; my $ei=0; my $sp; my $pepfile; my %pep; foreach $sp (@$species) { %pep=(); $pepfile=$inputDIR.$sp.".pep"; &ReadSequenceInToHash($pepfile,\%pep); if (scalar(keys %pep)<2) { $error[$ei++]="format error in $pepfile\n"; } } return @error; } sub chk2SEQ() { (my $species,my $inputDIR)=@_; my $sp; my %pep; my %nuc; my $pepfile; my $nucfile; my $key; my @error; my $ei=0; foreach $sp (@$species) { $pepfile=$inputDIR.$sp.".pep"; $nucfile=$inputDIR.$sp.".nuc"; %pep=(); %nuc=(); &ReadSequenceInToHash("$pepfile",\%pep); &ReadSequenceInToHash("$nucfile",\%nuc); if (scalar(keys %pep) ne scalar(keys %nuc)) { $error[$ei++]="Sequences number is not consistent in the following two file:\n\t$pepfile\n\t$nucfile\n"; }else { foreach $key (keys %pep) { if (exists($nuc{$key})) { if (length($nuc{$key}) ne ((length($pep{$key})+1)*3)) { $error[$ei++]="the length of $key in $nucfile is not consistent with its corresponding protein length\n"; } }else { $error[$ei++]="$key lost in $nucfile\n"; } } foreach $key (keys %nuc) { if (!exists($pep{$key})) { $error[$ei++]="1048 $key lost in $pepfile\n"; } } } } return @error; } sub chktab() { (my $species,my $inputDIR,my $extention)=@_; my %pep; my @row; my $key; my %tab; my @error; my $ei=0; my $sp; my $tabfile; my $pepfile; foreach $sp (@$species) { %tab=(); %pep=(); $tabfile=$inputDIR.$sp.$extention; open(F,"$tabfile"); while (<F>) { chomp(); @row=split(/\t/,$_); if (scalar(@row)<3) { $error[$ei++]="format error in $tabfile\n"; }else { $tab{$row[0]}=$row[1]; } } close(F); $pepfile=$inputDIR.$sp.".pep"; &ReadSequenceInToHash($pepfile,\%pep); foreach $key (keys %pep) { if (!exists($tab{$key})) { $error[$ei++]="sequence $key lost infomation in $tabfile\n"; } } } return @error; } sub ReadSequenceInToHash() { use Bio::SeqIO; (my $file,my $hash)=@_; my $seq; my $in=Bio::SeqIO->new(-file=>"$file",-format=>"fasta"); while ($seq=$in->next_seq()) { #$$hash{$id."|".$seq->id}=$seq->seq(); $$hash{$seq->id}=$seq->seq(); } } sub ReadAlignmentToHash() { (my $file,my $hash)=@_; my $name=""; my $seq=""; my @content; my $line; open(F,"$file"); @content=<F>; close(F); chomp(@content); for ($line=0;$line<@content;$line++) { if ($content[$line]=~/^>/) { if ($line>0) { $$hash{$name}=$seq; $name=""; } $_=$content[$line]; s/^>//; $name=$_; $seq=""; }else { if ($name ne "") { $seq=$seq.$content[$line]; } } } $$hash{$name}=$seq; } sub Combination() { (my $m,my $n,my $comRef)=@_; my $str=""; my %hash; my $fpos; my $num0; my $rest; my $tmp; my $i; my $j; my $key; #my $m=scalar(@$array); my @combination; for ($i=1;$i<=$n;$i++) { $str="1".$str; } for ($i=1;$i<=($m-$n);$i++) { $str=$str."0"; } $hash{$str}=1; while ($str=~/10/) { $fpos=index($str,"10"); $_=$str; s/10/01/; $str=$_; $tmp=substr($str,0,$fpos); $_=$tmp; s/0//g; $rest=$_; $num0=$fpos-length($_); for ($i=1;$i<=$num0;$i++) { $rest="$rest"."0"; } $str="$rest".substr($str,$fpos,$m-$fpos); $hash{$str}=1; } $j=0; foreach $key (keys %hash) { $combination[$j]=""; for ($i=0;$i<$m;$i++) { if (substr($key,$i,1) eq "1") { if ($combination[$j] ne "") { #$combination[$j]=$combination[$j]."\t".$$array[$i]; $combination[$j]=$combination[$j]."\t".$i; }else { #$combination[$j]=$$array[$i]; ### For return species ID $combination[$j]=$i; } } } $j++; } @$comRef=@combination; ### update the data through the physic address } sub ChkCombinationValue() { (my $m,my $n)=@_; my %hash; my %vhash; my $value=0; my $key; my @row; my @sdA; my @sdB; ### initialization $hash{$m."-".$n}=1; ### split combination while (scalar(keys %hash)>0 and $value<=$sampleSize) { foreach $key (keys %hash) { if ($value > $sampleSize) ### threshold { last; } if (!exists($hash{$key})) { next; } @row=split(/-/,$key); #print $row[0]."|".$row[1]."\n"; if ($row[0] eq $row[1]) { $value=$value+$hash{$key}; }else { ##split $sdA[0]=$row[0]-1; $sdA[1]=$row[1]; $sdB[0]=$row[0]-1; $sdB[1]=$row[1]-1; ##storing A if (($sdA[0] eq $sdA[1]) or $sdA[1] ==0) { $value=$value+$hash{$key}; }else { if (exists($hash{$sdA[0]."-".$sdA[1]})) { $hash{$sdA[0]."-".$sdA[1]}=$hash{$sdA[0]."-".$sdA[1]}+$hash{$key}; }else { $hash{$sdA[0]."-".$sdA[1]}=$hash{$key}; } } ##storing B if (($sdB[0] eq $sdB[1]) or $sdB[1]==0) { $value=$value+$hash{$key}; }else { if (exists($hash{$sdB[0]."-".$sdB[1]})) { $hash{$sdB[0]."-".$sdB[1]}=$hash{$sdB[0]."-".$sdB[1]}+$hash{$key}; }else { $hash{$sdB[0]."-".$sdB[1]}=$hash{$key}; } } } #delete original combination delete($hash{$key}); } } if ($value>$sampleSize) { return 0; }else { return $value; } } sub SampleCombination() { (my $m,my $n,my $comRef)=@_; my %hash; my $sampleTimes=0; my @randNum; my @sortID; my $i; my $j; my $tmp; while ( scalar(keys %hash)<$sampleSize and $sampleTimes<($sampleSize*2)) { for ($i=0;$i<$m;$i++) # generate random data { $randNum[$i]=int(100000 * rand(100)); $sortID[$i]=$i; } for ($i=0;$i<$m;$i++) # sorting random data { for ($j=0;$j<$m;$j++) { if ($randNum[$sortID[$i]]<$randNum[$sortID[$j]]) { $tmp=$sortID[$i]; $sortID[$i]=$sortID[$j]; $sortID[$j]=$tmp; } } } #storing data $tmp=join("\t",sort {$a<=>$b} (splice(@sortID,0,$n))); $hash{$tmp}=1; $sampleTimes++; } @$comRef=keys %hash; } sub PanGenomeNumber() { (my $spID)=@_; my $pan=0; my $core=0; my $count; #### counter; my @row; foreach (@clusters) { $count=0; @row=split(/\t/,$_); foreach (@$spID) { $count=$count+$row[$_]; } if ($count>0) { $pan++; if ($count == scalar(@$spID)) { $core++; } } } return $pan."\t".$core; } sub fit_model_A() { ### model y = A * x**B + C (my $xdata,my $ydata)=@_; my $i; my $b; my $max_B=0; my $max_R=0; my $max_A=0; my $max_A_interval; my $max_C=0; my $max_C_interval; my $R=1e-100; my $start; my $end; my $step; my @xValues; my @yValues; $start=1; $step=0.001; $b=$start; $max_R=0; $R=1e-100; use Statistics::LineFit; use Statistics::Distributions; while ($max_R<=$R) { if (($b < 0.02) and ($b >-0.02)) { $b=-0.02; } for ($i=0;$i<@$xdata;$i++) { $xValues[$i]=$$xdata[$i]**$b; } @yValues=@$ydata; my $lineFit = Statistics::LineFit->new(); $lineFit->setData (\@xValues, \@yValues) or die "Invalid data"; (my $intercept, my $slope) = $lineFit->coefficients(); my $rSquared = $lineFit->rSquared(); my $meanSquaredError = $lineFit->meanSqError(); my $durbinWatson = $lineFit->durbinWatson(); my $sigma = $lineFit->sigma(); (my $tStatIntercept, my $tStatSlope) = $lineFit->tStatistics(); (my $varianceIntercept,my $varianceSlope) = $lineFit->varianceOfEstimates(); $max_R=$R; $R=$rSquared; if ($max_R<=$R) { $max_R=$R; ($max_C,$max_A)=$lineFit->coefficients(); $max_A_interval=Statistics::Distributions::tdistr (($spnum-2),.025)*sqrt($varianceSlope); $max_C_interval=Statistics::Distributions::tdistr (($spnum-2),.025)*sqrt($varianceIntercept); } $b=$b-$step; } $max_B=$b; return ($max_R,$max_A,$max_A_interval,$max_B,$max_C,$max_C_interval); } sub fit_model_B() { ### model y = A * exp(x*B) + C (my $xdata,my $ydata)=@_; my $i; my $b; my $max_B=0; my $max_R=0; my $max_A=0; my $max_A_interval; my $max_C=0; my $max_C_interval; my $R=1e-100; my $start; my $end; my $step; my @xValues; my @yValues; $start=0; $step=0.001; $b=$start; $max_R=0; $R=1e-100; use Statistics::LineFit; use Statistics::Distributions; while ($max_R<=$R) { if (($b < 0.02) and ($b >-0.02)) { $b=-0.02; } for ($i=0;$i<@$xdata;$i++) { $xValues[$i]=exp($$xdata[$i]*$b); } @yValues=@$ydata; my $lineFit = Statistics::LineFit->new(); $lineFit->setData (\@xValues, \@yValues) or die "Invalid data"; (my $intercept, my $slope) = $lineFit->coefficients(); my $rSquared = $lineFit->rSquared(); my $meanSquaredError = $lineFit->meanSqError(); my $durbinWatson = $lineFit->durbinWatson(); my $sigma = $lineFit->sigma(); (my $tStatIntercept, my $tStatSlope) = $lineFit->tStatistics(); (my $varianceIntercept,my $varianceSlope) = $lineFit->varianceOfEstimates(); $max_R=$R; $R=$rSquared; if ($max_R<=$R) { $max_R=$R; ($max_C,$max_A)=$lineFit->coefficients(); $max_A_interval=Statistics::Distributions::tdistr (($spnum-2),.025)*sqrt($varianceSlope); $max_C_interval=Statistics::Distributions::tdistr (($spnum-2),.025)*sqrt($varianceIntercept); } $b=$b-$step; } $max_B=$b; return ($max_R,$max_A,$max_A_interval,$max_B,$max_C,$max_C_interval); } sub ReadData2Array() { (my $file, my $array1,my $col1,my $array2,my $col2)=@_; my $i=0; open(F,$file); $_=<F>; while (<F>) { chomp(); @_=split(/\t/,$_); $$array1[$i]=$_[$col1]; $$array2[$i]=$_[$col2]; $i++; } close(F); } sub SumData() { (my $xdata,my $ydata,my $SumMethod)=@_; my %hash; my $i; my $key; my $max=0; for ($i=0;$i<@$xdata;$i++) { if (exists($hash{$$xdata[$i]})) { $hash{$$xdata[$i]}=$hash{$$xdata[$i]}." ".$$ydata[$i]; }else { $hash{$$xdata[$i]}=$$ydata[$i]; if ($$xdata[$i]>$max) { $max=$$xdata[$i]; } } } @$xdata=qw(); @$ydata=qw(); $i=0; foreach $i (1..$max) { $$xdata[$i-1]=$i; if ($SumMethod eq "median") { $$ydata[$i-1]=&median($hash{$i}); }else { $$ydata[$i-1]=&mean($hash{$i}); } } #print join(",",@$xdata)."\n"; #print join(",",@$ydata)."\n"; } sub median() { (my $data)=@_; my @data=split(/ /,$data); my $arraylen=scalar(@data); @data=sort{$a<=>$b} @data; if (int($arraylen/2)*2 == $arraylen) { return ($data[$arraylen/2]+$data[$arraylen/2-1])/2; }else { return $data[int($arraylen/2)]; } } sub mean() { (my $data)=@_; my @data=split(/ /,$data); my $sum=0; foreach (@data) { $sum=$sum+$_; } return int(($sum/scalar(@data))*1000)/1000; } sub ReplaceName() { (my $sp,my $file)=@_; my @content; my $line; my $i; my $target; open(F,$file); @content=<F>; close(F); for ($line=0;$line<@content;$line++) { for ($i=0;$i<@$sp;$i++) { $_=$content[$line]; $target="sp".$i."sp"; s/$target/$$sp[$i]/; $content[$line]=$_; } } open(R,">$file"); print R @content; close(R); } sub MP_Result_to_Table() { (my $MPresult, my $outputfile)=@_; my %hash; my $maxid=0; my $i; my @row; open(F,"$MPresult"); $_=<F>; while (<F>) { @row=split(/\t/,$_); if (exists($hash{$row[0]})) { $hash{$row[0]}=$hash{$row[0]}."\t".$row[2]; }else { $hash{$row[0]}=$row[2]; if ($row[0]>$maxid) { $maxid=$row[0]; } } } close(F); open(R,">$outputfile"); foreach $i (1..$maxid) { print R $hash{$i}."\n"; } close(R); } sub FormatCluster() { (my $infile,my $genelist,my $spnum,my $cluster)=@_; my %hash; my %gene; my $key; my @row; my $sp; my $line; my $i=0; my $j=0; my @content; ### record gene in clusters open(F,"$infile"); @content=<F>; close(F); chomp(@content); for ($line=0;$line<@content;$line++) { @row=split(/\t/,$content[$line]); foreach $key (@row) { $gene{$key}=1; } } ###retrieves gene which is not in clutsers open(F,"$genelist"); while ($key=<F>) { if ($key=~/^>/) { chomp($key); $_=$key; s/^>//; $key=$_; if (!exists($gene{$key})) { $content[$line]=$key; $line++; } } } close(F); #### initialization @cluster @$cluster=qw(); $j=0; foreach $line (@content) { if ($line ne "") { %hash=(); @row=split(/\t/,$line); foreach $key (@row) { $sp=substr($key,0,index($key,"G")); $gene{$key}=1; if (exists($hash{$sp})) { $hash{$sp}=$hash{$sp}.",".$key; }else { $hash{$sp}=$key; } } $i=0; @row=qw(); foreach $i (0..($spnum-1)) { if (exists($hash{"S$i"})) { $row[$i]=$hash{"S$i"}; }else { $row[$i]="-"; } } $$cluster[$j++]=join("\t",@row); } } }