Mercurial > repos > dereeper > pgap
view PGAP-1.2.1/inparanoid.pl @ 0:83e62a1aeeeb draft
Uploaded
author | dereeper |
---|---|
date | Thu, 24 Jun 2021 13:51:52 +0000 |
parents | |
children |
line wrap: on
line source
#! /usr/bin/perl ############################################################################### # InParanoid version 4.1 # Copyright (C) Erik Sonnhammer, Kristoffer Forslund, Isabella Pekkari, # Ann-Charlotte Berglund, Maido Remm, 2007 # # This program is provided under the terms of a personal license to the recipient and may only # be used for the recipient's own research at an academic insititution. # # Distribution of the results of this program must be discussed with the authors. # For using this program in a company or for commercial purposes, a commercial license is required. # Contact Erik.Sonnhammer@sbc.su.se in both cases # # Make sure that Perl XML libraries are installed! # # NOTE: This script requires blastall (NCBI BLAST) version 2.2.16 or higher, that supports # compositional score matrix adjustment (-C2 flag). my $usage =" Usage: inparanoid.pl <FASTAFILE with sequences of species A> <FASTAFILE with sequences of species B> [FASTAFILE with sequences of species C] "; ############################################################################### # The program calculates orthologs between 2 datasets of proteins # called A and B. Both datasets should be in multi-fasta file # - Additionally, it tries to assign paralogous sequences (in-paralogs) to each # thus forming paralogous clusters. # - Confidence of in-paralogs is calculated in relative scale between 0-100%. # This confidence value is dependent on how far is given sequence from the # seed ortholog of given group # - Confidence of groups can be calculated with bootstrapping. This is related # to score difference between best hit and second best hit. # - Optionally it can use a species C as outgroup. ############################################################################### # You may need to run the following command manually to increase your # default datasize limit: 'limit datasize 500000 kb' ############################################################################### # Set following variables: # ############################################################################### # What do you want the program to do? # $run_blast = 1; # Set to 1 if you don't have the 4 BLAST output files # # Requires 'blastall', 'formatdb' (NCBI BLAST2) # # and parser 'blast_parser.pl' # $blast_two_passes = 1; # Set to 1 to run 2-pass strategy # # (strongly recommended, but slower) # $run_inparanoid = 1; $use_bootstrap = 1;# Use bootstrapping to estimate the confidence of orthologs# # Needs additional programs 'seqstat.jar' and 'blast2faa.pl' $use_outgroup = 0; # Use proteins from the third genome as an outgroup # # Reject best-best hit if outgroup sequence is MORE # # similar to one of the sequences # # (by more than $outgroup_cutoff bits) # # Define location of files and programs: #$blastall = "blastall -VT"; #Remove -VT for blast version 2.2.12 or earlier $blastall = "$ARGV[0] -a $ARGV[1]"; #Add -aN to use N processors $formatdb = "$ARGV[2]"; $seqstat = "seqstat.jar"; $blastParser = "blast_parser.pl"; #$matrix = "BLOSUM62"; # Reasonable default for comparison of eukaryotes. $matrix = "BLOSUM45"; #(for prokaryotes), #$matrix = "BLOSUM80"; #(orthologs within metazoa), #$matrix = "PAM70"; #$matrix = "PAM30"; # Output options: # $output = 0; # table_stats-format output # $table = 0; # Print tab-delimited table of orthologs to file "table.txt" # # Each orthologous group with all inparalogs is on one line # $mysql_table = 1; # Print out sql tables for the web server # # Each inparalog is on separate line # $html = 0; # HTML-format output # # Algorithm parameters: # Default values should work without problems. # MAKE SURE, however, that the score cutoff here matches what you used for BLAST! $score_cutoff = $ARGV[3]; # In bits. Any match below this is ignored # $outgroup_cutoff = 50; # In bits. Outgroup sequence hit must be this many bits# # stronger to reject best-best hit between A and B # $conf_cutoff = 0.05; # Include in-paralogs with this confidence or better # $group_overlap_cutoff = 0.5; # Merge groups if ortholog in one group has more # # than this confidence in other group # $grey_zone = 0; # This many bits signifies the difference between 2 scores # $show_times = 0; # Show times spent for execution of each part of the program # # (This does not work properly) # $debug = 0; # Print debugging messages or not. Levels 0,1,2 and 4 exist # my $seq_overlap_cutoff = $ARGV[4]; # Match area should cover at least this much of longer sequence. Match area is defined as area from start of # first segment to end of last segment, i.e segments 1-10 and 90-100 gives a match length of 100. my $segment_coverage_cutoff = $ARGV[5]; # Actually matching segments must cover this much of longer sequence. # For example, segments 1-10 and 90-100 gives a total length of 20. splice(@ARGV,0,6); ############################################################################### # No changes should be required below this line # ############################################################################### $ENV{CLASSPATH} = "./$seqstat" if ($use_bootstrap); if (!@ARGV){ print STDERR $usage; exit 1; } if ((@ARGV < 2) and ($run_inparanoid)){ print STDERR "\n When \$run_inparanoid=1, at least two distinct FASTA files have to be specified.\n"; print STDERR $usage; exit 1; } if ((!$run_blast) and (!$run_inparanoid)){ print STDERR "run_blast or run_inparanoid has to be set!\n"; exit 1; } # Input files: $fasta_seq_fileA = "$ARGV[0]"; $fasta_seq_fileB = "$ARGV[1]"; $fasta_seq_fileC = "$ARGV[2]" if ($use_outgroup); # This is outgroup file my $blast_outputAB = $fasta_seq_fileA . "-" . $fasta_seq_fileB; my $blast_outputBA = $fasta_seq_fileB . "-" . $fasta_seq_fileA; my $blast_outputAA = $fasta_seq_fileA . "-" . $fasta_seq_fileA; my $blast_outputBB = $fasta_seq_fileB . "-" . $fasta_seq_fileB; if ($use_outgroup){ $blast_outputAC = $fasta_seq_fileA . "-" . $fasta_seq_fileC; $blast_outputBC = $fasta_seq_fileB . "-" . $fasta_seq_fileC; } my %idA; # Name -> ID combinations for species 1 my %idB; # Name -> ID combinations for species 2 my @nameA; # ID -> Name combinations for species 1 my @nameB; # ID -> Name combinations for species 2 my @nameC; my %scoreAB; # Hashes with pairwise BLAST scores (in bits) my %scoreBA; my %scoreAA; my %scoreBB; my @hitnAB; # 1-D arrays that keep the number of pairwise hits my @hitnBA; my @hitnAA; my @hitnBB; my @hitAB; # 2-D arrays that keep the actual matching IDs my @hitBA; my @hitAA; my @hitBB; my @besthitAB; # IDs of best hits in other species (may contain more than one ID) my @besthitBA; # IDs of best hits in other species (may contain more than one ID) my @bestscoreAB; # best match A -> B my @bestscoreBA; # best match B -> A my @ortoA; # IDs of ortholog candidates from species A my @ortoB; # IDs of ortholog candidates from species B my @ortoS; # Scores between ortoA and ortoB pairs my @paralogsA; # List of paralog IDs in given cluster my @paralogsB; # List of paralog IDs in given cluster my @confPA; # Confidence values for A paralogs my @confPB; # Confidence values for B paralogs my @confA; # Confidence values for orthologous groups my @confB; # Confidence values for orthologous groups my $prev_time = 0; $outputfile = "Output." . $ARGV[0] . "-" . $ARGV[1]; if ($output){ open OUTPUT, ">$outputfile" or warn "Could not write to OUTPUT file $filename\n"; } ################################################# # Assign ID numbers for species A ################################################# open A, "$fasta_seq_fileA" or die "File A with sequences in FASTA format is missing Usage $0 <FASTAFILE with sequences of species A> <FASTAFILE with sequences of species B> <FASTAFILE with sequences of species C>\n"; $id = 0; while (<A>){ if(/^\>/){ ++$id; chomp; s/\>//; @tmp = split(/\s+/); #$name = substr($tmp[0],0,25); $name = $tmp[0]; $idA{$name} = int($id); $nameA[$id] = $name; } } close A; $A = $id; print "$A sequences in file $fasta_seq_fileA\n"; if ($output){ print OUTPUT "$A sequences in file $fasta_seq_fileA\n"; } if (@ARGV >= 2) { ################################################# # Assign ID numbers for species B ################################################# open B, "$fasta_seq_fileB" or die "File B with sequences in FASTA format is missing Usage $0 <FASTAFILE with sequences of species A> <FASTAFILE with sequences of species B> <FASTAFILE with sequences of species C>\n"; $id = 0; while (<B>){ if(/^\>/){ ++$id; chomp; s/\>//; @tmp = split(/\s+/); #$name = substr($tmp[0],0,25); $name = $tmp[0]; $idB{$name} = int($id); $nameB[$id] = $name; } } $B = $id; print "$B sequences in file $fasta_seq_fileB\n"; close B; if ($output){ print OUTPUT "$B sequences in file $fasta_seq_fileB\n"; } } ################################################# # Assign ID numbers for species C (outgroup) ################################################# if ($use_outgroup){ open C, "$fasta_seq_fileC" or die "File C with sequences in FASTA format is missing Usage $0 <FASTAFILE with sequences of species A> <FASTAFILE with sequences of species B> <FASTAFILE with sequences of species C>\n"; $id = 0; while (<C>){ if(/^\>/){ ++$id; chomp; s/\>//; @tmp = split(/\s+/); #$name = substr($tmp[0],0,25); $name = $tmp[0]; $idC{$name} = int($id); $nameC[$id] = $name; } } $C = $id; print "$C sequences in file $fasta_seq_fileC\n"; close C; if ($output){ print OUTPUT "$C sequences in file $fasta_seq_fileC\n"; } } if ($show_times){ ($user_time,,,) = times; printf ("Indexing sequences took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } ################################################# # Run BLAST if not done already ################################################# if ($run_blast){ print "Trying to run BLAST now - this may take several hours ... or days in worst case!\n"; print STDERR "Formatting BLAST databases\n"; system ("$formatdb -i $fasta_seq_fileA"); system ("$formatdb -i $fasta_seq_fileB") if (@ARGV >= 2); system ("$formatdb -i $fasta_seq_fileC") if ($use_outgroup); print STDERR "Done formatting\nStarting BLAST searches...\n"; # Run blast only if the files do not already exist is not default. # NOTE: you should have done this beforehand, because you probably # want two-pass blasting anyway which is not implemented here # this is also not adapted to use specific compositional adjustment settings # and might not use the proper blast parser... do_blast ($fasta_seq_fileA, $fasta_seq_fileA, $A, $A, $blast_outputAA); if (@ARGV >= 2) { do_blast ($fasta_seq_fileA, $fasta_seq_fileB, $B, $B, $blast_outputAB); do_blast ($fasta_seq_fileB, $fasta_seq_fileA, $A, $A, $blast_outputBA); do_blast ($fasta_seq_fileB, $fasta_seq_fileB, $B, $B, $blast_outputBB); } if ($use_outgroup){ do_blast ($fasta_seq_fileA, $fasta_seq_fileC, $A, $C, $blast_outputAC); do_blast ($fasta_seq_fileB, $fasta_seq_fileC, $B, $C, $blast_outputBC); } if ($show_times){ ($user_time,,,) = times; printf ("BLAST searches took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } print STDERR "Done BLAST searches. "; } else { print STDERR "Skipping blast! \n"; } if ($run_inparanoid){ print STDERR "Starting ortholog detection...\n"; ################################################# # Read in best hits from blast output file AB ################################################# $count = 0; open AB, "$blast_outputAB" or die "Blast output file A->B is missing\n"; $old_idQ = 0; while (<AB>){ chomp; @Fld = split(/\s+/); # Get query, match and score if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "AB ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $idQ = $idA{$q}; # ID of query sequence $idM = $idB{$m}; # ID of match sequence $score = $Fld[2]; next if (!overlap_test(@Fld)); # Score must be equal to or above cut-off next if ($score < $score_cutoff); if(!$count || $q ne $oldq){ print "Match $m, score $score, ID for $q is missing\n" if ($debug == 2 and !(exists($idA{$q}))); $hitnAB[$idA{$oldq}] = $hit if($count); # Record number of hits for previous query $hit = 0; ++$count; $oldq = $q; } ++$hit; $hitAB[$idQ][$hit] = int($idM); # printf ("hitAB[%d][%d] = %d\n",$idQ,$hit,$idM); $scoreAB{"$idQ:$idM"} = $score; $scoreBA{"$idM:$idQ"} = $score_cutoff; # Initialize mutual hit score - sometimes this is below score_cutoff $old_idQ = $idQ; # } } $hitnAB[$idQ] = $hit; # For the last query #printf ("hitnAB[1] = %d\n",$hitnAB[1]); #printf ("hitnAB[%d] = %d\n",$idQ,$hit); close AB; if ($output){ print OUTPUT "$count sequences $fasta_seq_fileA have homologs in dataset $fasta_seq_fileB\n"; } ################################################# # Read in best hits from blast output file BA ################################################# $count = 0; open BA, "$blast_outputBA" or die "Blast output file B->A is missing\n"; $old_idQ = 0; while (<BA>){ chomp; @Fld = split(/\s+/); # Get query, match and score if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "BA ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $idQ = $idB{$q}; $idM = $idA{$m}; $score = $Fld[2]; next if (!overlap_test(@Fld)); next if ($score < $score_cutoff); if(!$count || $q ne $oldq){ print "ID for $q is missing\n" if ($debug == 2 and (!exists($idB{$q}))); $hitnBA[$idB{$oldq}] = $hit if($count); # Record number of hits for previous query $hit = 0; ++$count; $oldq = $q; } ++$hit; $hitBA[$idQ][$hit] = int($idM); # printf ("hitBA[%d][%d] = %d\n",$idQ,$hit,$idM); $scoreBA{"$idQ:$idM"} = $score; $scoreAB{"$idM:$idQ"} = $score_cutoff if ($scoreAB{"$idM:$idQ"} < $score_cutoff); # Initialize missing scores $old_idQ = $idQ; # } } $hitnBA[$idQ] = $hit; # For the last query #printf ("hitnBA[%d] = %d\n",$idQ,$hit); close BA; if ($output){ print OUTPUT "$count sequences $fasta_seq_fileB have homologs in dataset $fasta_seq_fileA\n"; } ##################### Equalize AB scores and BA scores ########################## ###################################################################################################################################### Modification by Isabella 1 # I removed the time consuming all vs all search and equalize scores for all pairs where there was a hit foreach my $key (keys %scoreAB) { my ($a, $b) = split(':', $key); my $key2 = $b . ':' . $a; # If debugg mod is 5 and the scores A-B and B-A are unequal # the names of the two sequences and their scores are printed if ($scoreAB{$key} != $scoreBA{$key2}){ printf ("%-20s\t%-20s\t%d\t%d\n",$nameA[$a], $nameB[$b], $scoreAB{$key}, $scoreBA{$key2}) if ($debug == 5); } # Set score AB and score BA to the mean of scores AB and BA. # The final score is saved as an integer so .5 needs to be added to avoid rounding errors $scoreAB{$key} = $scoreBA{$key2} = int(($scoreAB{$key} + $scoreBA{$key2})/2.0 +.5); } # For all ids for sequences from organism A #for $a(1..$A){ #For all ids for sequences from organism B #for $b(1..$B){ # No need to equalize score if there was no match between sequence with id $a from species A # and sequence with id $b from species B # next if (!$scoreAB{"$a:$b"}); # If debugg mod is 5 and the scores A-B and B-A are unequal # the names of the two sequences and their scores are printed # if ($scoreAB{"$a:$b"} != $scoreBA{"$b:$a"}){ # printf ("%-20s\t%-20s\t%d\t%d\n",$nameA[$a], $nameB[$b], $scoreAB{"$a:$b"}, $scoreBA{"$b:$a"}) if ($debug == 5); # } # Set score AB and score BA to the mean of scores AB and BA. # The final score is saved as an integer so .5 needs to be added to avoid rounding errors # $scoreAB{"$a:$b"} = $scoreBA{"$b:$a"} = int(($scoreAB{"$a:$b"} + $scoreBA{"$b:$a"})/2.0 +.5); # printf ("scoreAB{%d: %d} = %d\n", $a, $b, $scoreAB{"$a:$b"}); # printf ("scoreBA{%d: %d} = %d\n", $b, $a, $scoreBA{"$a:$b"}); #} # } ####################################################################################################################################### End modification by Isabella 1 ##################### Re-sort hits, besthits and bestscore ####################### for $idA(1..$A){ # print "Loop index = $idA\n"; # printf ("hitnAB[%d] = %d\n",$idA, $hitnAB[$idA]); next if (!($hitnAB[$idA])); for $hit (1..($hitnAB[$idA]-1)){ # Sort hits by score while($scoreAB{"$idA:$hitAB[$idA][$hit]"} < $scoreAB{"$idA:$hitAB[$idA][$hit+1]"}){ $tmp = $hitAB[$idA][$hit]; $hitAB[$idA][$hit] = $hitAB[$idA][$hit+1]; $hitAB[$idA][$hit+1] = $tmp; --$hit if ($hit > 1); } } $bestscore = $bestscoreAB[$idA] = $scoreAB{"$idA:$hitAB[$idA][1]"}; $besthitAB[$idA] = $hitAB[$idA][1]; for $hit (2..$hitnAB[$idA]){ if ($bestscore - $scoreAB{"$idA:$hitAB[$idA][$hit]"} <= $grey_zone){ $besthitAB[$idA] .= " $hitAB[$idA][$hit]"; } else { last; } } undef $is_besthitAB[$idA]; # Create index that we can check later grep (vec($is_besthitAB[$idA],$_,1) = 1, split(/ /,$besthitAB[$idA])); # printf ("besthitAB[%d] = hitAB[%d][%d] = %d\n",$idA,$idA,$hit,$besthitAB[$idA]); } for $idB(1..$B){ # print "Loop index = $idB\n"; next if (!($hitnBA[$idB])); for $hit (1..($hitnBA[$idB]-1)){ # Sort hits by score while($scoreBA{"$idB:$hitBA[$idB][$hit]"} < $scoreBA{"$idB:$hitBA[$idB][$hit+1]"}){ $tmp = $hitBA[$idB][$hit]; $hitBA[$idB][$hit] = $hitBA[$idB][$hit+1]; $hitBA[$idB][$hit+1] = $tmp; --$hit if ($hit > 1); } } $bestscore = $bestscoreBA[$idB] = $scoreBA{"$idB:$hitBA[$idB][1]"}; $besthitBA[$idB] = $hitBA[$idB][1]; for $hit (2..$hitnBA[$idB]){ if ($bestscore - $scoreBA{"$idB:$hitBA[$idB][$hit]"} <= $grey_zone){ $besthitBA[$idB] .= " $hitBA[$idB][$hit]"; } else {last;} } undef $is_besthitBA[$idB]; # Create index that we can check later grep (vec($is_besthitBA[$idB],$_,1) = 1, split(/ /,$besthitBA[$idB])); # printf ("besthitBA[%d] = %d\n",$idA,$besthitAB[$idA]); } if ($show_times){ ($user_time,,,) = times; printf ("Reading and sorting homologs took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } ###################################################### # Now find orthologs: ###################################################### $o = 0; for $i(1..$A){ # For each ID in file A if (defined $besthitAB[$i]){ @besthits = split(/ /,$besthitAB[$i]); for $hit (@besthits){ if (vec($is_besthitBA[$hit],$i,1)){ ++$o; $ortoA[$o] = $i; $ortoB[$o] = $hit; $ortoS[$o] = $scoreAB{"$i:$hit"}; # Should be equal both ways # --$o if ($ortoS[$o] == $score_cutoff); # Ignore orthologs that are exactly at score_cutoff print "Accept! " if ($debug == 2); } else {print " " if ($debug == 2);} printf ("%-20s\t%d\t%-20s\t", $nameA[$i], $bestscoreAB[$i], $nameB[$hit]) if ($debug == 2); print "$bestscoreBA[$hit]\t$besthitBA[$hit]\n" if ($debug == 2); } } } print "$o ortholog candidates detected\n" if ($debug); ##################################################### # Sort orthologs by ID and then by score: ##################################################### ####################################################################################################### Modification by Isabella 2 # Removed time consuiming bubble sort. Created an index array and sort that according to id and score. # The put all clusters on the right place. # Create an array used to store the position each element shall have in the final array # The elements are initialized with the position numbers my @position_index_array = (1..$o); # Sort the position list according to id my @id_sorted_position_list = sort { ($ortoA[$a]+$ortoB[$a]) <=> ($ortoA[$b] + $ortoB[$b]) } @position_index_array; # Sort the list according to score my @score_id_sorted_position_list = sort { $ortoS[$b] <=> $ortoS[$a] } @id_sorted_position_list; # Create new arrays for the sorted information my @new_ortoA; my @new_ortoB; my @new_orthoS; # Add the information to the new arrays in the orer specifeid by the index array for (my $index_in_list = 0; $index_in_list < scalar @score_id_sorted_position_list; $index_in_list++) { my $old_index = $score_id_sorted_position_list[$index_in_list]; $new_ortoA[$index_in_list + 1] = $ortoA[$old_index]; $new_ortoB[$index_in_list + 1] = $ortoB[$old_index]; $new_ortoS[$index_in_list + 1] = $ortoS[$old_index]; } @ortoA = @new_ortoA; @ortoB = @new_ortoB; @ortoS = @new_ortoS; # Use bubblesort to sort ortholog pairs by id # for $i(1..($o-1)){ # while(($ortoA[$i]+$ortoB[$i]) > ($ortoA[$i+1] + $ortoB[$i+1])){ # $tempA = $ortoA[$i]; # $tempB = $ortoB[$i]; # $tempS = $ortoS[$i]; # # $ortoA[$i] = $ortoA[$i+1]; # $ortoB[$i] = $ortoB[$i+1]; # $ortoS[$i] = $ortoS[$i+1]; # # $ortoA[$i+1] = $tempA; # $ortoB[$i+1] = $tempB; # $ortoS[$i+1] = $tempS; # # --$i if ($i > 1); # } # } # # # Use bubblesort to sort ortholog pairs by score # for $i(1..($o-1)){ # while($ortoS[$i] < $ortoS[$i+1]){ # # Swap places: # $tempA = $ortoA[$i]; # $tempB = $ortoB[$i]; # $tempS = $ortoS[$i]; # # $ortoA[$i] = $ortoA[$i+1]; # $ortoB[$i] = $ortoB[$i+1]; # $ortoS[$i] = $ortoS[$i+1]; # # $ortoA[$i+1] = $tempA; # $ortoB[$i+1] = $tempB; # $ortoS[$i+1] = $tempS; # # --$i if ($i > 1); # } # } ###################################################################################################### End modification bt Isabella 2 @all_ortologsA = (); @all_ortologsB = (); for $i(1..$o){ push(@all_ortologsA,$ortoA[$i]); # List of all orthologs push(@all_ortologsB,$ortoB[$i]); } undef $is_ortologA; # Create index that we can check later undef $is_ortologB; grep (vec($is_ortologA,$_,1) = 1, @all_ortologsA); grep (vec($is_ortologB,$_,1) = 1, @all_ortologsB); if ($show_times){ ($user_time,,,) = times; printf ("Finding and sorting orthologs took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } ################################################# # Read in best hits from blast output file AC ################################################# if ($use_outgroup){ $count = 0; open AC, "$blast_outputAC" or die "Blast output file A->C is missing\n"; while (<AC>){ chomp; @Fld = split(/\s+/); # Get query, match and score if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "AC ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $idQ = $idA{$q}; $idM = $idC{$m}; $score = $Fld[2]; next unless (vec($is_ortologA,$idQ,1)); next if (!overlap_test(@Fld)); next if ($score < $score_cutoff); next if ($count and ($q eq $oldq)); # Only comes here if this is the best hit: $besthitAC[$idQ] = $idM; $bestscoreAC[$idQ] = $score; $oldq = $q; ++$count; } close AC; ################################################# # Read in best hits from blast output file BC ################################################# $count = 0; open BC, "$blast_outputBC" or die "Blast output file B->C is missing\n"; while (<BC>){ chomp; @Fld = split(/\s+/); # Get query, match and score if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "BC ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $idQ = $idB{$q}; $idM = $idC{$m}; $score = $Fld[2]; next unless (vec($is_ortologB,$idQ,1)); next if (!overlap_test(@Fld)); next if ($score < $score_cutoff); next if ($count and ($q eq $oldq)); # Only comes here if this is the best hit: $besthitBC[$idQ] = $idM; $bestscoreBC[$idQ] = $score; $oldq = $q; ++$count; } close BC; ################################ # Detect rooting problems ################################ $rejected = 0; @del = (); $file = "rejected_sequences." . $fasta_seq_fileC; open OUTGR, ">$file"; for $i (1..$o){ $diff1 = $diff2 = 0; $idA = $ortoA[$i]; $idB = $ortoB[$i]; $diff1 = $bestscoreAC[$idA] - $ortoS[$i]; $diff2 = $bestscoreBC[$idB] - $ortoS[$i]; if ($diff1 > $outgroup_cutoff){ print OUTGR "Ortholog pair $i ($nameA[$idA]-$nameB[$idB]). $nameA[$idA] from $fasta_seq_fileA is closer to $nameC[$besthitAC[$idA]] than to $nameB[$idB]\n"; print OUTGR " $ortoS[$i] < $bestscoreAC[$idA] by $diff1\n"; } if ($diff2 > $outgroup_cutoff){ print OUTGR "Ortholog pair $i ($nameA[$idA]-$nameB[$idB]). $nameB[$idB] from $fasta_seq_fileB is closer to $nameC[$besthitBC[$idB]] than to $nameA[$idA]\n"; print OUTGR " $ortoS[$i] < $bestscoreBC[$idB] by $diff2\n"; } if (($diff1 > $outgroup_cutoff) or ($diff2 > $outgroup_cutoff)){ ++$rejected; $del[$i] = 1; } } print "Number of rejected groups: $rejected (outgroup sequence was closer by more than $outgroup_cutoff bits)\n"; close OUTGR; } # End of $use_outgroup ################################ # Read inside scores from AA ################################ $count = 0; $max_hit = 0; open AA, "$blast_outputAA" or die "Blast output file A->A is missing\n"; while (<AA>) { chomp; # strip newline @Fld = split(/\s+/); # Get query and match names if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "AA ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $score = $Fld[2]; next unless (vec($is_ortologA,$idA{$q},1)); next if (!overlap_test(@Fld)); next if ($score < $score_cutoff); if(!$count || $q ne $oldq){ # New query $max_hit = $hit if ($hit > $max_hit); $hit = 0; $oldq = $q; } ++$hit; ++$count; $scoreAA{"$idA{$q}:$idA{$m}"} = int($score + 0.5); $hitAA[$idA{$q}][$hit] = int($idA{$m}); $hitnAA[$idA{$q}] = $hit; } close AA; if ($output){ print OUTPUT "$count $fasta_seq_fileA-$fasta_seq_fileA matches\n"; } ################################ # Read inside scores from BB ################################ $count = 0; open BB, "$blast_outputBB" or die "Blast output file B->B is missing\n"; while (<BB>) { chomp; # strip newline @Fld = split(/\s+/); # Get query and match names if( scalar @Fld < 9 ){ if($Fld[0]=~/done/){ print STDERR "BB ok\n"; } next; } $q = $Fld[0]; $m = $Fld[1]; $score = $Fld[2]; next unless (vec($is_ortologB,$idB{$q},1)); next if (!overlap_test(@Fld)); next if ($score < $score_cutoff); if(!$count || $q ne $oldq){ # New query $max_hit = $hit if ($hit > $max_hit); $oldq = $q; $hit = 0; } ++$count; ++$hit; $scoreBB{"$idB{$q}:$idB{$m}"} = int($score + 0.5); $hitBB[$idB{$q}][$hit] = int($idB{$m}); $hitnBB[$idB{$q}] = $hit; } close BB; if ($output){ print OUTPUT "$count $fasta_seq_fileB-$fasta_seq_fileB matches\n"; } if ($show_times){ ($user_time,,,) = times; printf ("Reading paralogous hits took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } print "Maximum number of hits per sequence was $max_hit\n" if ($debug); ##################################################### # Find paralogs: ##################################################### for $i(1..$o){ $merge[$i] = 0; next if($del[$i]); # If outgroup species was closer to one of the seed orthologs $idA = $ortoA[$i]; $idB = $ortoB[$i]; local @membersA = (); local @membersB = (); undef $is_paralogA[$i]; undef $is_paralogB[$i]; print "$i: Ortholog pair $nameA[$idA] and $nameB[$idB]. $hitnAA[$idA] hits for A and $hitnBB[$idB] hits for B\n" if ($debug); # Check if current ortholog is already clustered: for $j(1..($i-1)){ # Overlap type 1: Both orthologs already clustered here -> merge if ((vec($is_paralogA[$j],$idA,1)) and (vec($is_paralogB[$j],$idB,1))){ $merge[$i] = $j; print "Merge CASE 1: group $i ($nameB[$idB]-$nameA[$idA]) and $j ($nameB[$ortoB[$j]]-$nameA[$ortoA[$j]])\n" if ($debug); last; } # Overlap type 2: 2 competing ortholog pairs -> merge elsif (($ortoS[$j] - $ortoS[$i] <= $grey_zone) and (($ortoA[$j] == $ortoA[$i]) or ($ortoB[$j] == $ortoB[$i])) # and ($paralogsA[$j]) ){ # The last condition is false if the previous cluster has been already deleted $merge[$i] = $j; print "Merge CASE 2: group $i ($nameA[$ortoA[$i]]-$nameB[$ortoB[$i]]) and $j ($nameA[$ortoA[$j]]-$nameB[$ortoB[$j]])\n" if ($debug); last; } # Overlap type 3: DELETE One of the orthologs belongs to some much stronger cluster -> delete elsif (((vec($is_paralogA[$j],$idA,1)) or (vec($is_paralogB[$j],$idB,1))) and ($ortoS[$j] - $ortoS[$i] > $score_cutoff)){ print "Delete CASE 3: Cluster $i -> $j, score $ortoS[$i] -> $ortoS[$j], ($nameA[$ortoA[$j]]-$nameB[$ortoB[$j]])\n" if ($debug); $merge[$i]= -1; # Means - do not add sequences to this cluster $paralogsA[$i] = ""; $paralogsB[$i] = ""; last; } # Overlap type 4: One of the orthologs is close to the center of other cluster elsif (((vec($is_paralogA[$j],$idA,1)) and ($confPA[$idA] > $group_overlap_cutoff)) or ((vec($is_paralogB[$j],$idB,1)) and ($confPB[$idB] > $group_overlap_cutoff))){ print "Merge CASE 4: Cluster $i -> $j, score $ortoS[$i] -> $ortoS[$j], ($nameA[$ortoA[$j]]-$nameB[$ortoB[$j]])\n" if ($debug); $merge[$i] = $j; last; } # Overlap type 5: # All clusters that were overlapping, but not catched by previous "if" statements will be DIVIDED! } next if ($merge[$i] < 0); # This cluster should be deleted ##### Check for paralogs in A $N = $hitnAA[$idA]; for $j(1..$N){ $hitID = $hitAA[$idA][$j]; # hit of idA # print "Working with $nameA[$hitID]\n" if ($debug == 2); # Decide whether this hit is inside the paralog circle: if ( ($idA == $hitID) or ($scoreAA{"$idA:$hitID"} >= $bestscoreAB[$idA]) and ($scoreAA{"$idA:$hitID"} >= $bestscoreAB[$hitID])){ if ($debug == 2){ print " Paralog candidates: "; printf ("%-20s: %-20s", $nameA[$idA], $nameA[$hitID]); print "\t$scoreAA{\"$idA:$hitID\"} : $bestscoreAB[$idA] : $bestscoreAB[$hitID]\n"; } $paralogs = 1; if ($scoreAA{"$idA:$idA"} == $ortoS[$i]){ if ($scoreAA{"$idA:$hitID"} == $scoreAA{"$idA:$idA"}){ $conf_here = 1.0; # In the center } else{ $conf_here = 0.0; # On the border } } else { $conf_here = ($scoreAA{"$idA:$hitID"} - $ortoS[$i]) / ($scoreAA{"$idA:$idA"} - $ortoS[$i]); } # Check if this paralog candidate is already clustered in other clusters for $k(1..($i-1)){ if (vec($is_paralogA[$k],$hitID,1)){ # Yes, found in cluster $k if($debug == 2){ print " $nameA[$hitID] is already in cluster $k, together with:"; print " $nameA[$ortoA[$k]] and $nameB[$ortoB[$k]] "; print "($scoreAA{\"$ortoA[$k]:$hitID\"})"; } if (($confPA[$hitID] >= $conf_here) and ($j != 1)){ # The seed ortholog CAN NOT remain there print " and remains there.\n" if ($debug == 2); $paralogs = 0; # No action } else { # Ortholog of THIS cluster is closer than ortholog of competing cluster $k print " and should be moved here!\n" if ($debug == 2); # Remove from other cluster, add to this cluster @membersAK = split(/ /, $paralogsA[$k]); # This array contains IDs $paralogsA[$k] = "";# Remove all paralogs from cluster $k @tmp = (); for $m(@membersAK){ push(@tmp,$m) if ($m != $hitID); # Put other members back } $paralogsA[$k] = join(' ',@tmp); undef $is_paralogA[$k]; # Create index that we can check later grep (vec($is_paralogA[$k],$_,1) = 1, @tmp); } last; } } next if (! $paralogs); # Skip that paralog - it is already in cluster $k push (@membersA,$hitID); # Add this hit to paralogs of A } } # Calculate confidence values now: @tmp = (); for $idP (@membersA){ # For each paralog calculate conf value if($scoreAA{"$idA:$idA"} == $ortoS[$i]){ if ($scoreAA{"$idA:$idP"} == $scoreAA{"$idA:$idA"}){ $confPA[$idP] = 1.00; } else{ $confPA[$idP] = 0.00; } } else{ $confPA[$idP] = ($scoreAA{"$idA:$idP"} - $ortoS[$i]) / ($scoreAA{"$idA:$idA"} - $ortoS[$i]); } push (@tmp, $idP) if ($confPA[$idP] >= $conf_cutoff); # If one wishes to use only significant paralogs } @membersA = @tmp; ########### Merge if necessary: if ($merge[$i] > 0){ # Merge existing cluster with overlapping cluster @tmp = split(/ /,$paralogsA[$merge[$i]]); for $m (@membersA){ push (@tmp, $m) unless (vec($is_paralogA[$merge[$i]],$m,1)); } $paralogsA[$merge[$i]] = join(' ',@tmp); undef $is_paralogA[$merge[$i]]; grep (vec($is_paralogA[$merge[$i]],$_,1) = 1, @tmp); # Refresh index of paralog array } ######### Typical new cluster: else{ # Create a new cluster $paralogsA[$i] = join(' ',@membersA); undef $is_paralogA; # Create index that we can check later grep (vec($is_paralogA[$i],$_,1) = 1, @membersA); } ##### The same procedure for species B: $N = $hitnBB[$idB]; for $j(1..$N){ $hitID = $hitBB[$idB][$j]; # print "Working with $nameB[$hitID]\n" if ($debug == 2); if ( ($idB == $hitID) or ($scoreBB{"$idB:$hitID"} >= $bestscoreBA[$idB]) and ($scoreBB{"$idB:$hitID"} >= $bestscoreBA[$hitID])){ if ($debug == 2){ print " Paralog candidates: "; printf ("%-20s: %-20s", $nameB[$idB], $nameB[$hitID]); print "\t$scoreBB{\"$idB:$hitID\"} : "; print "$bestscoreBA[$idB] : $bestscoreBA[$hitID]\n"; } $paralogs = 1; if ($scoreBB{"$idB:$idB"} == $ortoS[$i]){ if ($scoreBB{"$idB:$hitID"} == $scoreBB{"$idB:$idB"}){ $conf_here = 1.0; } else{ $conf_here = 0.0; } } else{ $conf_here = ($scoreBB{"$idB:$hitID"} - $ortoS[$i]) / ($scoreBB{"$idB:$idB"} - $ortoS[$i]); } # Check if this paralog candidate is already clustered in other clusters for $k(1..($i-1)){ if (vec($is_paralogB[$k],$hitID,1)){ # Yes, found in cluster $k if($debug == 2){ print " $nameB[$hitID] is already in cluster $k, together with:"; print " $nameB[$ortoB[$k]] and $nameA[$ortoA[$k]] "; print "($scoreBB{\"$ortoB[$k]:$hitID\"})"; } if (($confPB[$hitID] >= $conf_here) and ($j != 1)){ # The seed ortholog CAN NOT remain there print " and remains there.\n" if ($debug == 2); $paralogs = 0; # No action } else { # Ortholog of THIS cluster is closer than ortholog of competing cluster $k print " and should be moved here!\n" if ($debug == 2); # Remove from other cluster, add to this cluster @membersBK = split(/ /, $paralogsB[$k]); # This array contains names, not IDs $paralogsB[$k] = ""; @tmp = (); for $m(@membersBK){ push(@tmp,$m) if ($m != $hitID); # Put other members back } $paralogsB[$k] = join(' ',@tmp); undef $is_paralogB[$k]; # Create index that we can check later grep (vec($is_paralogB[$k],$_,1) = 1, @tmp); } last; # Don't search in other clusters } } next if (! $paralogs); # Skip that paralog - it is already in cluster $k push (@membersB,$hitID); } } # Calculate confidence values now: @tmp = (); for $idP (@membersB){ # For each paralog calculate conf value if($scoreBB{"$idB:$idB"} == $ortoS[$i]){ if ($scoreBB{"$idB:$idP"} == $scoreBB{"$idB:$idB"}){ $confPB[$idP] = 1.0; } else{ $confPB[$idP] = 0.0; } } else{ $confPB[$idP] = ($scoreBB{"$idB:$idP"} - $ortoS[$i]) / ($scoreBB{"$idB:$idB"} - $ortoS[$i]); } push (@tmp, $idP) if ($confPB[$idP] >= $conf_cutoff); # If one wishes to use only significant paralogs } @membersB = @tmp; ########### Merge if necessary: if ($merge[$i] > 0){ # Merge existing cluster with overlapping cluster @tmp = split(/ /,$paralogsB[$merge[$i]]); for $m (@membersB){ push (@tmp, $m) unless (vec($is_paralogB[$merge[$i]],$m,1)); } $paralogsB[$merge[$i]] = join(' ',@tmp); undef $is_paralogB[$merge[$i]]; grep (vec($is_paralogB[$merge[$i]],$_,1) = 1, @tmp); # Refresh index of paralog array } ######### Typical new cluster: else{ # Create a new cluster $paralogsB[$i] = join(' ',@membersB); undef $is_paralogB; # Create index that we can check later grep (vec($is_paralogB[$i],$_,1) = 1, @membersB); } } if ($show_times){ ($user_time,,,) = times; printf ("Finding in-paralogs took %.2f seconds\n", ($user_time - $prev_time)); $prev_time = $user_time; } ##################################################### &clean_up(1); #################################################### # Find group for orphans. If cluster contains only one member, find where it should go: for $i (1..$o){ @membersA = split(/ /, $paralogsA[$i]); @membersB = split(/ /, $paralogsB[$i]); $na = @membersA; $nb = @membersB; if (($na == 0) and $nb){ print "Warning: empty A cluster $i\n"; for $m (@membersB){ $bestscore = 0; $bestgroup = 0; $bestmatch = 0; for $j (1..$o) { next if ($i == $j); # Really need to check against all 100% members of the group. @membersBJ = split(/ /, $paralogsB[$j]); for $k (@membersBJ){ next if ($confPB[$k] != 1); # For all 100% in-paralogs $score = $scoreBB{"$m:$k"}; if ($score > $bestscore){ $bestscore = $score; $bestgroup = $j; $bestmatch = $k; } } } print "Orphan $nameB[$m] goes to group $bestgroup with $nameB[$bestmatch]\n" ; @members = split(/ /, $paralogsB[$bestgroup]); push (@members, $m); $paralogsB[$bestgroup] = join(' ',@members); $paralogsB[$i] = ""; undef $is_paralogB[$bestgroup]; undef $is_paralogB[$i]; grep (vec($is_paralogB[$bestgroup],$_,1) = 1, @members); # Refresh index of paralog array # grep (vec($is_paralogB[$i],$_,1) = 1, ()); } } if ($na and ($nb == 0)){ print "Warning: empty B cluster $i\n"; for $m (@membersA){ $bestscore = 0; $bestgroup = 0; $bestmatch = 0; for $j (1..$o) { next if ($i == $j); @membersAJ = split(/ /, $paralogsA[$j]); for $k (@membersAJ){ next if ($confPA[$k] != 1); # For all 100% in-paralogs $score = $scoreAA{"$m:$k"}; if ($score > $bestscore){ $bestscore = $score; $bestgroup = $j; $bestmatch = $k; } } } print "Orphan $nameA[$m] goes to group $bestgroup with $nameA[$bestmatch]\n"; @members = split(/ /, $paralogsA[$bestgroup]); push (@members, $m); $paralogsA[$bestgroup] = join(' ',@members); $paralogsA[$i] = ""; undef $is_paralogA[$bestgroup]; undef $is_paralogA[$i]; grep (vec($is_paralogA[$bestgroup],$_,1) = 1, @members); # Refresh index of paralog array # grep (vec($is_paralogA[$i],$_,1) = 1, ()); } } } &clean_up(1); ################### $htmlfile = "orthologs." . $ARGV[0] . "-" . $ARGV[1] . ".html"; if ($html){ open HTML, ">$htmlfile" or warn "Could not write to HTML file $filename\n"; } if ($output){ print OUTPUT "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\n"; print OUTPUT "$o groups of orthologs\n"; print OUTPUT "$totalA in-paralogs from $fasta_seq_fileA\n"; print OUTPUT "$totalB in-paralogs from $fasta_seq_fileB\n"; print OUTPUT "Grey zone $grey_zone bits\n"; print OUTPUT "Score cutoff $score_cutoff bits\n"; print OUTPUT "In-paralogs with confidence less than $conf_cutoff not shown\n"; print OUTPUT "Sequence overlap cutoff $seq_overlap_cutoff\n"; print OUTPUT "Group merging cutoff $group_overlap_cutoff\n"; print OUTPUT "Scoring matrix $matrix\n"; print OUTPUT "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\n"; } if ($html){ print HTML "<pre>\n"; print HTML "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\n"; print HTML "$o groups of orthologs\n"; print HTML "$totalA in-paralogs from $fasta_seq_fileA\n"; print HTML "$totalB in-paralogs from $fasta_seq_fileB\n"; print HTML "Grey zone $grey_zone bits\n"; print HTML "Score cutoff $score_cutoff bits\n"; print HTML "In-paralogs with confidence less than $conf_cutoff not shown\n"; print HTML "Sequence overlap cutoff $seq_overlap_cutoff\n"; print HTML "Group merging cutoff $group_overlap_cutoff\n"; print HTML "Scoring matrix $matrix\n"; print HTML "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\n"; } # ############################################################################## # Check for alternative orthologs, sort paralogs by confidence and print results # ############################################################################## if ($use_bootstrap and $debug){ open FF, ">BS_vs_bits" or warn "Could not write to file BS_vs_bits\n"; } for $i(1..$o){ @membersA = split(/ /, $paralogsA[$i]); @membersB = split(/ /, $paralogsB[$i]); $message = ""; $htmlmessage = ""; $idB = $ortoB[$i]; $nB = $hitnBA[$idB]; for $idA(@membersA){ next if ($confPA[$idA] != 1.0); $nA = $hitnAB[$idA]; $confA[$i] = $ortoS[$i]; # default $bsA[$idA] = 1.0; ############## for $j(1..$nB){ $idH = $hitBA[$idB][$j]; ################ Some checks for alternative orthologs: # 1. Don't consider sequences that are already in this cluster next if (vec($is_paralogA[$i],$idH,1)); next if ($confPA[$idH] > 0); # If $conf_cutoff > 0 idH might be incide circle, but not paralog # 2. Check if candidate for alternative ortholog is already clustered in stronger clusters $in_other_cluster = 0; for $k(1..($i-1)){ # Check if current ortholog is already clustered if (vec($is_paralogA[$k],$idH,1)){ $in_other_cluster = $k; last; } } # next if ($in_other_cluster); # This hit is clustered in cluster $k. It cannot be alternative ortholog # 3. The best hit of candidate ortholog should be ortoA or at least to belong into this cluster @besthits = split (/ /,$besthitAB[$idH]); $this_family = 0; for $bh (@besthits){ $this_family = 1 if ($idB == $bh); } # next unless ($this_family); # There was an alternative BA match but it's best match did not belong here ################# Done with checks - if sequence passed, then it could be an alternative ortholog $confA[$i] = $ortoS[$i] - $scoreBA{"$idB:$idH"}; if ($use_bootstrap){ if ($confA[$i] < $ortoS[$i]){ # Danger zone - check for bootstrap $bsA[$idA] = &bootstrap($fasta_seq_fileB,$idB,$idA,$idH); } else { $bsA[$idA] = 1.0; } } last; } $message .= sprintf("Bootstrap support for %s as seed ortholog is %d%%.", $nameA[$idA], 100*$bsA[$idA]); $message .= sprintf(" Alternative seed ortholog is %s (%d bits away from this cluster)", $nameA[$idH], $confA[$i]) if ($bsA[$idA] < 0.75); $message .= sprintf("\n"); if ($html){ if ($bsA[$idA] < 0.75){ $htmlmessage .= sprintf("<font color=\"red\">"); } elsif ($bsA[$idA] < 0.95){ $htmlmessage .= sprintf("<font color=\"\#FFCC00\">"); } else { $htmlmessage .= sprintf("<font color=\"green\">"); } $htmlmessage .= sprintf("Bootstrap support for %s as seed ortholog is %d%%.\n", $nameA[$idA], 100*$bsA[$idA]); $htmlmessage .= sprintf("Alternative seed ortholog is %s (%d bits away from this cluster)\n", $nameA[$idH], $confA[$i]) if ($bsA[$idA] < 0.75); $htmlmessage .= sprintf("</font>"); } printf (FF "%s\t%d\t%d\n", $nameA[$idA], $confA[$i], 100*$bsA[$idA]) if ($use_bootstrap and $debug); } ######## $idA = $ortoA[$i]; $nA = $hitnAB[$idA]; for $idB(@membersB){ next if ($confPB[$idB] != 1.0); $nB = $hitnBA[$idB]; $confB[$i] = $ortoS[$i]; # default $bsB[$idB] = 1.0; for $j(1..$nA){ # For all AB hits of given ortholog $idH = $hitAB[$idA][$j]; # ############### Some checks for alternative orthologs: # 1. Don't consider sequences that are already in this cluster next if (vec($is_paralogB[$i],$idH,1)); next if ($confPB[$idH] > 0); # If $conf_cutoff > 0 idH might be incide circle, but not paralog # 2. Check if candidate for alternative ortholog is already clustered in stronger clusters $in_other_cluster = 0; for $k(1..($i-1)){ if (vec($is_paralogB[$k],$idH,1)){ $in_other_cluster = $k; last; # out from this cycle } } # next if ($in_other_cluster); # This hit is clustered in cluster $k. It cannot be alternative ortholog # 3. The best hit of candidate ortholog should be ortoA @besthits = split (/ /,$besthitBA[$idH]); $this_family = 0; for $bh (@besthits){ $this_family = 1 if ($idA == $bh); } # next unless ($this_family); # There was an alternative BA match but it's best match did not belong here # ################ Done with checks - if sequence passed, then it could be an alternative ortholog $confB[$i] = $ortoS[$i] - $scoreAB{"$idA:$idH"}; if ($use_bootstrap){ if ($confB[$i] < $ortoS[$i]){ $bsB[$idB] = &bootstrap($fasta_seq_fileA,$idA,$idB,$idH); } else { $bsB[$idB] = 1.0; } } last; } $message .= sprintf("Bootstrap support for %s as seed ortholog is %d%%.", $nameB[$idB], 100*$bsB[$idB]); $message .= sprintf(" Alternative seed ortholog is %s (%d bits away from this cluster)", $nameB[$idH],$confB[$i]) if ($bsB[$idB] < 0.75); $message .= sprintf("\n"); if ($html){ if ($bsB[$idB] < 0.75){ $htmlmessage .= sprintf("<font color=\"red\">"); } elsif ($bsB[$idB] < 0.95){ $htmlmessage .= sprintf("<font color=\"\#FFCC00\">"); } else { $htmlmessage .= sprintf("<font color=\"green\">"); } $htmlmessage .= sprintf("Bootstrap support for %s as seed ortholog is %d%%.\n", $nameB[$idB], 100*$bsB[$idB]); $htmlmessage .= sprintf("Alternative seed ortholog is %s (%d bits away from this cluster)\n", $nameB[$idH],$confB[$i]) if ($bsB[$idB] < 0.75); $htmlmessage .= sprintf("</font>"); } printf (FF "%s\t%d\t%d\n", $nameB[$idB], $confB[$i], 100*$bsB[$idB]) if ($use_bootstrap and $debug); } close FF; ########### Print header ############### if ($output){ print OUTPUT "___________________________________________________________________________________\n"; print OUTPUT "Group of orthologs #" . $i .". Best score $ortoS[$i] bits\n"; print OUTPUT "Score difference with first non-orthologous sequence - "; printf (OUTPUT "%s:%d %s:%d\n", $fasta_seq_fileA,$confA[$i],$fasta_seq_fileB,$confB[$i]); } if ($html){ print HTML "</pre>\n"; print HTML "<hr WIDTH=\"100%\">"; print HTML "<h3>"; print HTML "Group of orthologs #" . $i .". Best score $ortoS[$i] bits<br>\n"; print HTML "Score difference with first non-orthologous sequence - "; printf (HTML "%s:%d %s:%d</h3><pre>\n", $fasta_seq_fileA,$confA[$i],$fasta_seq_fileB,$confB[$i]); } ########### Sort and print members of A ############ $nA = @membersA; $nB = @membersB; $nMAX = ($nA > $nB) ? $nA : $nB; # Sort membersA inside the cluster by confidence: for $m (0..($nA-1)){ while($confPA[$membersA[$m]] < $confPA[$membersA[$m+1]]){ $temp = $membersA[$m]; $membersA[$m] = $membersA[$m+1]; $membersA[$m+1] = $temp; --$m if ($m > 1); } } $paralogsA[$i] = join(' ',@membersA); # Put them back together # Sort membersB inside the cluster by confidence: for $m (0..($nB-1)){ while($confPB[$membersB[$m]] < $confPB[$membersB[$m+1]]){ $temp = $membersB[$m]; $membersB[$m] = $membersB[$m+1]; $membersB[$m+1] = $temp; --$m if ($m > 1); } } $paralogsB[$i] = join(' ',@membersB); # Put them back together # Print to text file and to HTML file for $m (0..($nMAX-1)){ if ($m < $nA){ if ($output){ printf (OUTPUT "%-20s\t%.2f%%\t\t", $nameA[$membersA[$m]], (100*$confPA[$membersA[$m]])); } if ($html){ print HTML "<B>" if ($confPA[$membersA[$m]] == 1); printf (HTML "%-20s\t%.2f%%\t\t", $nameA[$membersA[$m]], (100*$confPA[$membersA[$m]])); print HTML "</B>" if ($confPA[$membersA[$m]] == 1); } } else { printf (OUTPUT "%-20s\t%-7s\t\t", " ", " "); printf (HTML "%-20s\t%-7s\t\t", " ", " ") if ($html); } if ($m < $nB){ if ($output){ printf (OUTPUT "%-20s\t%.2f%%\n", $nameB[$membersB[$m]], (100*$confPB[$membersB[$m]])); } if ($html){ print HTML "<B>" if ($confPB[$membersB[$m]] == 1); printf (HTML "%-20s\t%.2f%%", $nameB[$membersB[$m]], (100*$confPB[$membersB[$m]])); print HTML "</B>" if ($confPB[$membersB[$m]] == 1); print HTML "\n"; } } else { printf (OUTPUT "%-20s\t%-7s\n", " ", " ") if($output); print HTML "\n" if ($html); } } print OUTPUT $message if ($use_bootstrap and $output); print HTML "$htmlmessage" if ($use_bootstrap and $html); } if ($output) { close OUTPUT; print "Output saved to file $outputfile\n"; } if ($html){ close HTML; print "HTML output saved to $htmlfile\n"; } if ($table){ $filename = "table." . $ARGV[0] . "-" . $ARGV[1]; open F, ">$filename" or die; print F "OrtoID\tScore\tOrtoA\tOrtoB\n"; for $i(1..$o){ print F "$i\t$ortoS[$i]\t"; @members = split(/ /, $paralogsA[$i]); for $m (@members){ $m =~ s/://g; printf (F "%s %.3f ", $nameA[$m], $confPA[$m]); } print F "\t"; @members = split(/ /, $paralogsB[$i]); for $m (@members){ $m =~ s/://g; printf (F "%s %.3f ", $nameB[$m], $confPB[$m]); } print F "\n"; } close F; print "Table output saved to $filename\n"; } if ($mysql_table){ $filename2 = "sqltable." . $ARGV[0] . "-" . $ARGV[1]; open F2, ">$filename2" or die; for $i(1..$o){ @membersA = split(/ /, $paralogsA[$i]); for $m (@membersA){ # $m =~ s/://g; if ($use_bootstrap && $bsA[$m]) { printf (F2 "%d\t%d\t%s\t%.3f\t%s\t%d%\n", $i, $ortoS[$i], $ARGV[0], $confPA[$m], $nameA[$m], 100*$bsA[$m]); } else { printf (F2 "%d\t%d\t%s\t%.3f\t%s\n", $i, $ortoS[$i], $ARGV[0], $confPA[$m], $nameA[$m]); } } @membersB = split(/ /, $paralogsB[$i]); for $m (@membersB){ # $m =~ s/://g; if ($use_bootstrap && $bsB[$m]) { printf (F2 "%d\t%d\t%s\t%.3f\t%s\t%d%\n", $i, $ortoS[$i], $ARGV[1], $confPB[$m], $nameB[$m], 100*$bsB[$m]); }else { printf (F2 "%d\t%d\t%s\t%.3f\t%s\n", $i, $ortoS[$i], $ARGV[1], $confPB[$m], $nameB[$m]); } } } close F2; print "mysql output saved to $filename2\n"; } if ($show_times){ ($user_time,,,) = times; printf ("Finding bootstrap values and printing took %.2f seconds\n", ($user_time - $prev_time)); printf ("The overall execution time: %.2f seconds\n", $user_time); } if ($run_blast) { unlink "formatdb.log"; unlink "$fasta_seq_fileA.phr", "$fasta_seq_fileA.pin", "$fasta_seq_fileA.psq"; unlink "$fasta_seq_fileB.phr", "$fasta_seq_fileB.pin", "$fasta_seq_fileB.psq" if (@ARGV >= 2); unlink "$fasta_seq_fileC.phr", "$fasta_seq_fileC.pin", "$fasta_seq_fileC.psq" if ($use_outgroup); } } ############################################################## # Functions: ############################################################## sub clean_up { # Sort members within cluster and clusters by size ############################################################################################### Modification by Isabella 3 # Sort on index arrays with perl's built in sort instead of using bubble sort. $var = shift; $totalA = $totalB = 0; # First pass: count members within each cluster foreach $i (1..$o) { @membersA = split(/ /, $paralogsA[$i]); $clusnA[$i] = @membersA; # Number of members in this cluster $totalA += $clusnA[$i]; $paralogsA[$i] = join(' ',@membersA); @membersB = split(/ /, $paralogsB[$i]); $clusnB[$i] = @membersB; # Number of members in this cluster $totalB += $clusnB[$i]; $paralogsB[$i] = join(' ',@membersB); $clusn[$i] = $clusnB[$i] + $clusnA[$i]; # Number of members in given group } # Create an array used to store the position each element shall have in the final array # The elements are initialized with the position numbers my @position_index_array = (1..$o); # Sort the position list according to cluster size my @cluster_sorted_position_list = sort { $clusn[$b] <=> $clusn[$a]} @position_index_array; # Create new arrays for the sorted information my @new_paralogsA; my @new_paralogsB; my @new_is_paralogA; my @new_is_paralogB; my @new_clusn; my @new_ortoS; my @new_ortoA; my @new_ortoB; # Add the information to the new arrays in the orer specifeid by the index array for (my $index_in_list = 0; $index_in_list < scalar @cluster_sorted_position_list; $index_in_list++) { my $old_index = $cluster_sorted_position_list[$index_in_list]; if (!$clusn[$old_index]) { $o = (scalar @new_ortoS) - 1; last; } $new_paralogsA[$index_in_list + 1] = $paralogsA[$old_index]; $new_paralogsB[$index_in_list + 1] = $paralogsB[$old_index]; $new_is_paralogA[$index_in_list + 1] = $is_paralogA[$old_index]; $new_is_paralogB[$index_in_list + 1] = $is_paralogB[$old_index]; $new_clusn[$index_in_list + 1] = $clusn[$old_index]; $new_ortoA[$index_in_list + 1] = $ortoA[$old_index]; $new_ortoB[$index_in_list + 1] = $ortoB[$old_index]; $new_ortoS[$index_in_list + 1] = $ortoS[$old_index]; } @paralogsA = @new_paralogsA; @paralogsB = @new_paralogsB; @is_paralogA = @new_is_paralogA; @is_paralogB = @new_is_paralogB; @clusn = @new_clusn; @ortoS = @new_ortoS; @ortoA = @new_ortoA; @ortoB = @new_ortoB; # Create an array used to store the position each element shall have in the final array # The elements are initialized with the position numbers @position_index_array = (1..$o); # Sort the position list according to score @score_sorted_position_list = sort { $ortoS[$b] <=> $ortoS[$a] } @position_index_array; # Create new arrays for the sorted information my @new_paralogsA2 = (); my @new_paralogsB2 = (); my @new_is_paralogA2 = (); my @new_is_paralogB2 = (); my @new_clusn2 = (); my @new_ortoS2 = (); my @new_ortoA2 = (); my @new_ortoB2 = (); # Add the information to the new arrays in the orer specifeid by the index array for (my $index_in_list = 0; $index_in_list < scalar @score_sorted_position_list; $index_in_list++) { my $old_index = $score_sorted_position_list[$index_in_list]; $new_paralogsA2[$index_in_list + 1] = $paralogsA[$old_index]; $new_paralogsB2[$index_in_list + 1] = $paralogsB[$old_index]; $new_is_paralogA2[$index_in_list + 1] = $is_paralogA[$old_index]; $new_is_paralogB2[$index_in_list + 1] = $is_paralogB[$old_index]; $new_clusn2[$index_in_list + 1] = $clusn[$old_index]; $new_ortoA2[$index_in_list + 1] = $ortoA[$old_index]; $new_ortoB2[$index_in_list + 1] = $ortoB[$old_index]; $new_ortoS2[$index_in_list + 1] = $ortoS[$old_index]; } @paralogsA = @new_paralogsA2; @paralogsB = @new_paralogsB2; @is_paralogA = @new_is_paralogA2; @is_paralogB = @new_is_paralogB2; @clusn = @new_clusn2; @ortoS = @new_ortoS2; @ortoA = @new_ortoA2; @ortoB = @new_ortoB2; #################################################################################### End modification by Isabella 3 } sub bootstrap{ my $species = shift; my $seq_id1 = shift; # Query ID from $species my $seq_id2 = shift; # Best hit ID from other species my $seq_id3 = shift; # Second best hit # Retrieve sequence 1 from $species and sequence 2 from opposite species my $significance = 0.0; if ($species eq $fasta_seq_fileA){ $file1 = $fasta_seq_fileA; $file2 = $fasta_seq_fileB; } elsif ($species eq $fasta_seq_fileB){ $file1 = $fasta_seq_fileB; $file2 = $fasta_seq_fileA; } else { print "Bootstrap values for ortholog groups are not calculated\n"; return 0; } open A, $file1 or die; $id = 0; $print_this_seq = 0; $seq1 = ""; $seq2 = ""; $query_file = $seq_id1 . ".faq"; open Q, ">$query_file" or die; while (<A>){ if(/^\>/){ ++$id; $print_this_seq = ($id == $seq_id1)?1:0; } print Q if ($print_this_seq); } close A; close Q; ### open B, $file2 or die; $db_file = $seq_id2 . ".fas"; open DB, ">$db_file" or die; $id = 0; $print_this_seq = 0; while (<B>){ if(/^\>/){ ++$id; $print_this_seq = (($id == $seq_id2) or ($id == $seq_id3))?1:0; } print DB if ($print_this_seq); } close B; close DB; system "$formatdb -i $db_file"; # Use soft masking in 1-pass mode for simplicity. system "$blastall -F\"m S\" -i $query_file -z 5000000 -d $db_file -p blastp -M $matrix -m7 | ./$blastParser 0 -a > $seq_id2.faa"; # Note: Changed score cutoff 50 to 0 for blast2faa.pl (060402). # Reason: after a cluster merger a score can be less than the cutoff (50) # which will remove the sequence in blast2faa.pl. The bootstrapping will # then fail. # AGAIN, updaye if (-s("$seq_id2.faa")){ system("java -jar $seqstat -m $matrix -n 1000 -i $seq_id2.faa > $seq_id2.bs"); # Can handle U, u if (-s("$seq_id2.bs")){ open BS, "$seq_id2.bs" or die "pac failed\n"; $_ = <BS>; ($dummy1,$dummy2,$dummy3,$dummy4,$significance) = split(/\s+/); close BS; } else{ print STDERR "pac failed\n"; # if ($debug); $significance = -0.01; } } else{ print STDERR "blast2faa for $query_file / $db_file failed\n"; # if ($debug); $significance = 0.0; } unlink "$seq_id2.fas", "$seq_id2.faa", "$seq_id2.bs", "$seq_id1.faq"; unlink "formatdb.log", "$seq_id2.fas.psq", "$seq_id2.fas.pin", "$seq_id2.fas.phr"; return $significance; } sub overlap_test{ my @Fld = @_; # Filter out fragmentary hits by: # Ignore hit if aggregate matching area covers less than $seq_overlap_cutoff of sequence. # Ignore hit if local matching segments cover less than $segment_coverage_cutoff of sequence. # # $Fld[3] and $Fld[4] are query and subject lengths. # $Fld[5] and $Fld[6] are lengths of the aggregate matching region on query and subject. (From start of first matching segment to end of last matching segment). # $Fld[7] and $Fld[8] are local matching length on query and subject (Sum of all segments length's on query). $retval = 1; # if ($Fld[3] >= $Fld[4]) { if ($Fld[5] < ($seq_overlap_cutoff * $Fld[3])) {$retval = 0}; if ($Fld[7] < ($segment_coverage_cutoff * $Fld[3])) {$retval = 0}; # } # if ($Fld[4] >= $Fld[3]) { if ($Fld[6] < ($seq_overlap_cutoff * $Fld[4])) {$retval = 0}; if ($Fld[8] < ($segment_coverage_cutoff * $Fld[4])) {$retval = 0}; # } # print "$Fld[3] $Fld[5] $Fld[7]; $Fld[4] $Fld[6] $Fld[8]; retval=$retval\n"; return $retval; } sub do_blast { my @parameter=@_; my $resultfile=@parameter[@parameter-1]; my $go_to_blast=1; my $resultfilesize; if (-e $resultfile) { $resultfilesize= -s "$resultfile"; if ($resultfilesize >10240) { $go_to_blast=0; } } if ($go_to_blast) { if ($blast_two_passes) { do_blast_2pass(@parameter); } else { do_blast_1pass(@parameter); } } } sub do_blast_1pass { my @Fld = @_; # $Fld [0] is query # $Fld [1] is database # $Fld [2] is query size # $Fld [3] is database size # $Fld [4] is output name # Use soft masking (low complexity masking by SEG in search phase, not in alignment phase). system ("$blastall -F\"m S\" -i $Fld[0] -d $Fld[1] -p blastp -v $Fld[3] -b $Fld[3] -M $matrix -z 5000000 -m7 | ./$blastParser $score_cutoff > $Fld[4]"); } sub do_blast_2pass { my @Fld = @_; # $Fld [0] is query # $Fld [1] is database # $Fld [2] is query size # $Fld [3] is database size # $Fld [4] is output name # assume the script has already formatted the database # we will now do 2-pass approach # load sequences %sequencesA = (); %sequencesB = (); open (FHA, $Fld [0]); while (<FHA>) { $aLine = $_; chomp ($aLine); $seq = ""; if ($aLine =~ />/) { @words = split (/\s/, $aLine); $seqID = $words[0]; $sequencesA {$seqID} = ""; } else { $sequencesA {$seqID} = $sequencesA {$seqID}.$aLine; } } close (FHA); open (FHB, $Fld [1]); while (<FHB>) { $aLine = $_; chomp ($aLine); $seq = ""; if ($aLine =~ />/) { @words = split (/\s/, $aLine); $seqID = $words[0]; $sequencesB {$seqID} = ""; } else { $sequencesB {$seqID} = $sequencesB {$seqID}.$aLine; } } close (FHB); # Do first pass with compositional adjustment on and soft masking. # This efficiently removes low complexity matches but truncates alignments, # making a second pass necessary. print STDERR "\nStarting first BLAST pass for $Fld[0] - $Fld[1] on "; system("date"); open FHR, "$blastall -C3 -F\"m S\" -i $Fld[0] -d $Fld[1] -p blastp -v $Fld[3] -b $Fld[3] -M $matrix -z 5000000 -m7 | ./$blastParser $score_cutoff|"; %theHits = (); while (<FHR>) { $aLine = $_; chomp ($aLine); @words = split (/\s+/, $aLine); if (exists ($theHits {$words [0]})) { $theHits {$words [0]} = $theHits {$words [0]}." ".$words [1]; } else { $theHits {$words [0]} = $words [1]; } } close (FHR); $tmpdir = "."; # May be slightly (5%) faster using the RAM disk "/dev/shm". $tmpi = "$tmpdir/tmpi"; $tmpd = "$tmpdir/tmpd"; # Do second pass with compositional adjustment off to get full-length alignments. print STDERR "\nStarting second BLAST pass for $Fld[0] - $Fld[1] on "; system("date"); unlink "$Fld[4]"; foreach $aQuery (keys % theHits) { # Create single-query file open (FHT, ">$tmpi"); print FHT ">$aQuery\n".$sequencesA {">$aQuery"}."\n"; close (FHT); # Create mini-database of hit sequences open (FHT, ">$tmpd"); foreach $aHit (split (/\s/, $theHits {$aQuery})) { print FHT ">$aHit\n".$sequencesB {">$aHit"}."\n"; } close (FHT); # Run Blast and add to output system ("$formatdb -i $tmpd"); system ("$blastall -C0 -FF -i $tmpi -d $tmpd -p blastp -v $Fld[3] -b $Fld[3] -M $matrix -z 5000000 -m7 | ./$blastParser $score_cutoff >> $Fld[4]"); } unlink "$tmpi", "$tmpd", "formatdb.log", "$tmpd.phr", "$tmpd.pin", "$tmpd.psq"; } # Date Modification # -------- --------------------------------------------------- # # 2006-04-02 [1.36] - Changed score cutoff 50 to 0 for blast2faa.pl. # Reason: after a cluster merger a score can be less than the cutoff (50) # which will remove the sequence in blast2faa.pl. The bootstrapping will # then fail. # - Fixed bug with index variable in bootstrap routine. # # 2006-06-01 [2.0] - Fixed bug in blast_parser.pl: fields 7 and 8 were swapped, # it was supposed to print match_area before HSP_length. # - Fixed bug in blastall call: -v param was wrong for the A-B # and B-A comparisons. # - # - Changed "cluster" to "group" consistently in output. # - Changed "main ortholog" to "seed ortholog" in output. # - Replace U -> X before running seqstat.jar, otherwise it crashes. # 2006-08-04 [2.0] - In bootstrap subroutine, replace U with X, otherwise seqstat # will crash as this is not in the matrix (should fix this in seqstat) # 2006-08-04 [2.1] - Changed to writing default output to file. # - Added options to run blast only. # - Fixed some file closing bugs. # 2007-12-14 [3.0] - Sped up sorting routines (by Isabella). # - New XML-based blast_parser. # - New seqstat.jar to handle u and U. # - Modified overlap criterion for rejecting matches. Now it agrees with the paper. # 2009-04-01 [4.0] - Further modification of overlap criteria (require that they are met for both query and subject). # - Changed bit score cutoff to 40, which is suitable for compositionally adjusted BLAST. # - Added in 2-pass algorithm. # 2009-06-11 [4.0] - Moved blasting out to subroutine. # - Changed blasting in bootstrap subroutine to use unconditional score matrix adjustment and SEG hard masking, # to be the same as first step of 2-pass blast. # 2009-06-17 [4.0] - Compensated a Blast "bug" that sometimes gives a self-match lower score than a non-identical match. # This can happen with score matrix adjustment and can lead to missed orthologs. # 2009-08-18 [4.0] - Consolidated Blast filtering parameters for 2-pass (-C3 -F\"m S\"; -C0 -FF) # 2009-10-09 [4.1] - Fixed bug that caused failure if Fasta header lines had more than one word.