Mercurial > repos > dereeper > ragoo
view RaGOO/ragoo.py @ 13:b9a3aeb162ab draft default tip
Uploaded
author | dereeper |
---|---|
date | Mon, 26 Jul 2021 18:22:37 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python from collections import defaultdict from collections import OrderedDict import copy from intervaltree import IntervalTree from ragoo_utilities.PAFReader import PAFReader from ragoo_utilities.SeqReader import SeqReader from ragoo_utilities.ReadCoverage import ReadCoverage from ragoo_utilities.ContigAlignment import ContigAlignment from ragoo_utilities.ContigAlignment import UniqueContigAlignment from ragoo_utilities.ContigAlignment import LongestContigAlignment from ragoo_utilities.GFFReader import GFFReader from ragoo_utilities.utilities import run, log, reverse_complement, read_contigs, read_gz_contigs from ragoo_utilities.break_chimera import get_ref_parts, cluster_contig_alns, avoid_gff_intervals, update_gff, break_contig, get_intra_contigs def update_misasm_features(features, breaks, contig, ctg_len): # Get ctg len from ReadCoverage object break_list = [0] + sorted(breaks) + [ctg_len] borders = [] for i in range(len(break_list) - 1): borders.append((break_list[i], break_list[i+1])) # Pop the features to be updated contig_feats = features.pop(contig) # Initialize lists for new broken contig headers for i in range(len(borders)): features[contig + '_misasm_break:' + str(borders[i][0]) + '-' + str(borders[i][1])] = [] t = IntervalTree() for i in borders: t[i[0]:i[1]] = i for i in contig_feats: query = t[i.start] assert len(query) == 1 break_start = list(query)[0].begin break_end = list(query)[0].end query_border = (break_start, break_end) break_number = borders.index(query_border) i.seqname = contig + '_misasm_break:' + str(borders[break_number][0]) + '-' + str(borders[break_number][1]) i.start = i.start - break_start i.end = i.end - break_start features[ contig + '_misasm_break:' + str(borders[break_number][0]) + '-' + str(borders[break_number][1])].append(i) return features def remove_gff_breaks(gff_ins, breaks): """ Given a list of candidate breakpoints proposed by misassembly correction, remove any such break points that fall within the interval of a gff feature. This should be called once per contig. :param gff_ins: List of GFFLines :param breaks: candidate break points :return: """ # Make an interval tree from the intervals of the gff lines t = IntervalTree() for line in gff_ins: # If the interval is one bp long, skip if line.start == line.end: continue t[line.start:line.end] = (line.start, line.end) return [i for i in breaks if not t[i]] def write_misasm_broken_ctgs(contigs_file, breaks, out_prefix, in_gff=None, in_gff_name=None): current_path = os.getcwd() os.chdir('ctg_alignments') if in_gff and in_gff_name: with open(in_gff_name, 'w') as f: for i in in_gff.keys(): for j in in_gff[i]: f.write(str(j) + '\n') x = SeqReader("../../" + contigs_file) f = open(out_prefix + ".misasm.break.fa", 'w') for header, seq in x.parse_fasta(): header = header[1:] if header not in breaks: f.write(">" + header + "\n") f.write(seq + "\n") else: # Break the contig ctg_len = len(seq) break_list = [0] + sorted(breaks[header]) + [ctg_len] for i in range(len(break_list) - 1): f.write(">" + header + "_misasm_break:" + str(break_list[i]) + "-" + str(break_list[i+1]) + "\n") f.write(seq[break_list[i]:break_list[i+1]] + "\n") os.chdir(current_path) def align_misasm_broken(out_prefix): current_path = os.getcwd() os.chdir('ctg_alignments') ctgs_file = out_prefix + ".misasm.break.fa" cmd = '{} -k19 -w19 -t{} ../../{} {} ' \ '> contigs_brk_against_ref.paf 2> contigs_brk_against_ref.paf.log'.format(minimap_path, t, reference_file, ctgs_file) if not os.path.isfile('contigs_brk_against_ref.paf'): run(cmd) os.chdir(current_path) def write_contig_clusters(unique_dict, thresh, skip_list): # Get a list of all chromosomes all_chroms = set([unique_dict[i].ref_chrom for i in unique_dict.keys()]) current_path = os.getcwd() output_path = current_path + '/groupings' if not os.path.exists(output_path): os.makedirs(output_path) os.chdir('groupings') for i in all_chroms: open(i + '_contigs.txt', 'w').close() for i in unique_dict.keys(): this_chr = unique_dict[i].ref_chrom this_confidence = unique_dict[i].confidence if this_confidence > thresh: if not i in skip_list: file_name = str(this_chr) + '_contigs.txt' with open(file_name, 'a') as f: f.write(i + '\t' + str(this_confidence) + '\n') os.chdir(current_path) def clean_alignments(in_alns, l=10000, in_exclude_file='', uniq_anchor_filter=False, merge=False): # Exclude alignments to undesired reference headers and filter alignment lengths. exclude_list = [] if in_exclude_file: with open('../' + in_exclude_file) as f: for line in f: exclude_list.append(line.rstrip().replace('>', '').split()[0]) empty_headers = [] for header in in_alns.keys(): in_alns[header].exclude_ref_chroms(exclude_list) in_alns[header].filter_lengths(l) if uniq_anchor_filter: in_alns[header].unique_anchor_filter() if merge: in_alns[header].merge_alns() # Check if our filtering has removed all alignments for a contig if len(in_alns[header].ref_headers) == 0: empty_headers.append(header) for header in empty_headers: in_alns.pop(header) return in_alns def read_paf_alignments(in_paf): # Read in PAF alignments # Initialize a dictionary where key is contig header, and value is ContigAlignment. alns = dict() x = PAFReader(in_paf) for paf_line in x.parse_paf(): if paf_line.contig in alns: alns[paf_line.contig].add_alignment(paf_line) else: alns[paf_line.contig] = ContigAlignment(paf_line.contig) alns[paf_line.contig].add_alignment(paf_line) return alns def get_contigs_from_groupings(in_file): contigs = [] with open(in_file) as f: for line in f: contigs.append(line.split('\t')[0]) return contigs def get_location_confidence(in_ctg_alns): # Use interval tree to get all alignments with the reference span # Go through each of them and if any start is less than the min_pos or any end is greater than # the max_pos, change the borders to those values. Then use the algorithm that Mike gave me. min_pos = min(in_ctg_alns.ref_starts) max_pos = max(in_ctg_alns.ref_ends) t = IntervalTree() # Put the reference start and end position for every alignment into the tree for i in range(len(in_ctg_alns.ref_headers)): t[in_ctg_alns.ref_starts[i]:in_ctg_alns.ref_ends[i]] = (in_ctg_alns.ref_starts[i], in_ctg_alns.ref_ends[i]) overlaps = t[min_pos:max_pos] if not overlaps: return 0 # If any intervals fall beyond the boundaries, replace the start/end with the boundary it exceeds ovlp_list = [i.data for i in overlaps] bounded_list = [] for i in ovlp_list: if i[0] < min_pos: i[0] = min_pos if i[1] > max_pos: i[1] = max_pos bounded_list.append(i) # Now can just calculate the total range covered by the intervals ovlp_range = 0 sorted_intervals = sorted(bounded_list, key=lambda tup: tup[0]) max_end = -1 for j in sorted_intervals: start_new_terr = max(j[0], max_end) ovlp_range += max(0, j[1] - start_new_terr) max_end = max(max_end, j[1]) return ovlp_range / (max_pos - min_pos) def order_orient_contigs(in_unique_contigs, in_alns): current_path = os.getcwd() output_path = current_path + '/orderings' if not os.path.exists(output_path): os.makedirs(output_path) # Get longest alignments longest_contigs = dict() for i in in_alns.keys(): # Only consider alignments to the assigned chromosome uniq_aln = UniqueContigAlignment(in_alns[i]) best_header = uniq_aln.ref_chrom ctg_alns = copy.deepcopy(in_alns[i]) ctg_alns.filter_ref_chroms([best_header]) longest_contigs[i] = LongestContigAlignment(ctg_alns) # Save the orientations final_orientations = dict() for i in longest_contigs.keys(): final_orientations[i] = longest_contigs[i].strand # Get the location and orientation confidence scores orientation_confidence = dict() location_confidence = dict() forward_bp = 0 reverse_bp = 0 for i in in_alns.keys(): uniq_aln = UniqueContigAlignment(in_alns[i]) best_header = uniq_aln.ref_chrom ctg_alns = copy.deepcopy(in_alns[i]) ctg_alns.filter_ref_chroms([best_header]) # Orientation confidence scores # Every base pair votes for the orientation of the alignment in which it belongs # Score is # votes for the assigned orientation over all votes for j in range(len(ctg_alns.ref_headers)): if ctg_alns.strands[j] == '+': forward_bp += ctg_alns.aln_lens[j] else: reverse_bp += ctg_alns.aln_lens[j] if final_orientations[i] == '+': orientation_confidence[i] = forward_bp / (forward_bp + reverse_bp) else: orientation_confidence[i] = reverse_bp / (forward_bp + reverse_bp) forward_bp = 0 reverse_bp = 0 # Location confidence location_confidence[i] = get_location_confidence(ctg_alns) all_chroms = set([in_unique_contigs[i].ref_chrom for i in in_unique_contigs.keys()]) for this_chrom in all_chroms: # Intialize the list of start and end positions w.r.t the query ref_pos = [] groupings_file = 'groupings/' + this_chrom + '_contigs.txt' contigs_list = get_contigs_from_groupings(groupings_file) for i in range(len(contigs_list)): # There is a scope issue here. Pass this (longest_contigs) to the method explicitly. ref_pos.append((longest_contigs[contigs_list[i]].ref_start, longest_contigs[contigs_list[i]].ref_end, i)) final_order = [contigs_list[i[2]] for i in sorted(ref_pos)] # Get ordering confidence # To do this, get the max and min alignments to this reference chromosome # Then within that region, what percent of bp are covered with open('orderings/' + this_chrom + '_orderings.txt', 'w') as out_file: for i in final_order: # Also have a scope issue here. out_file.write(i + '\t' + final_orientations[i] + '\t' + str(location_confidence[i]) + '\t' + str(orientation_confidence[i]) + '\n') def get_orderings(in_orderings_file): all_orderings = [] with open(in_orderings_file) as f: for line in f: L1 = line.split('\t') all_orderings.append((L1[0], L1[1].rstrip())) return all_orderings def create_pseudomolecules(in_contigs_file, in_unique_contigs, gap_size, chr0=True): """ Need to make a translation table for easy lift-over. :param in_contigs_file: :param in_unique_contigs: :param gap_size: :return: """ # First, read all of the contigs into memory remaining_contig_headers = [] all_seqs = OrderedDict() x = SeqReader('../' + in_contigs_file) if in_contigs_file.endswith(".gz"): for header, seq in x.parse_gzip_fasta(): remaining_contig_headers.append(header.split(' ')[0]) all_seqs[header.split(' ')[0]] = seq else: for header, seq in x.parse_fasta(): remaining_contig_headers.append(header.split(' ')[0]) all_seqs[header.split(' ')[0]] = seq # Get all reference chromosomes all_chroms = sorted(list(set([in_unique_contigs[i].ref_chrom for i in in_unique_contigs.keys()]))) # Iterate through each orderings file and store sequence in a dictionary all_pms = dict() pad = ''.join('N' for i in range(gap_size)) for this_chrom in all_chroms: orderings_file = 'orderings/' + this_chrom + '_orderings.txt' orderings = get_orderings(orderings_file) if orderings: seq_list = [] for line in orderings: # Mark that we have seen this contig remaining_contig_headers.pop(remaining_contig_headers.index('>' + line[0])) if line[1] == '+': seq_list.append(all_seqs['>' + line[0]]) else: assert line[1] == '-' seq_list.append(reverse_complement(all_seqs['>' + line[0]])) all_pms[this_chrom] = pad.join(seq_list) all_pms[this_chrom] += '\n' # Get unincorporated sequences and place them in Chr0 if remaining_contig_headers: if chr0: chr0_headers = [] chr0_seq_list = [] for header in remaining_contig_headers: chr0_headers.append(header) chr0_seq_list.append(all_seqs[header]) all_pms['Chr0'] = pad.join(chr0_seq_list) all_pms['Chr0'] += '\n' # Write out the list of chr0 headers f_chr0_g = open('groupings/Chr0_contigs.txt', 'w') f_chr0_o = open('orderings/Chr0_orderings.txt', 'w') for i in chr0_headers: f_chr0_g.write(i[1:] + "\t" + "0" + '\n') f_chr0_o.write(i[1:] + '\t' + "+" + '\t' + "0" + '\t' + "0" + '\n') f_chr0_g.close() f_chr0_o.close() else: # Instead of making a chromosome 0, add the unplaced sequences as is. for header in remaining_contig_headers: all_pms[header[1:]] = all_seqs[header] + "\n" f_chr0_g = open('groupings/' + header[1:] + '_contigs.txt', 'w') f_chr0_o = open('orderings/' + header[1:] + '_orderings.txt', 'w') f_chr0_g.write(header[1:] + "\t" + "0" + '\n') f_chr0_o.write(header[1:] + '\t' + "+" + '\t' + "0" + '\t' + "0" + '\n') f_chr0_g.close() f_chr0_o.close() # Write the final sequences out to a file with open('ragoo.fasta', 'w') as f: for out_header in all_pms: f.write(">" + out_header + "_RaGOO\n") f.write(all_pms[out_header]) def write_broken_files(in_contigs, in_contigs_name, in_gff=None, in_gff_name=None): current_path = os.getcwd() output_path = current_path + '/chimera_break' if not os.path.exists(output_path): os.makedirs(output_path) os.chdir('chimera_break') if in_gff and in_gff_name: with open(in_gff_name, 'w') as f: for i in in_gff.keys(): for j in in_gff[i]: f.write(str(j) + '\n') with open(in_contigs_name, 'w') as f: for i in in_contigs.keys(): f.write('>' + i + '\n') f.write(in_contigs[i] + '\n') os.chdir(current_path) def align_breaks(break_type, m_path, in_reference_file, in_contigs_file, in_num_threads): current_path = os.getcwd() os.chdir('chimera_break') if break_type == 'inter': cmd = '{} -k19 -w19 -t{} ../../{} {} ' \ '> inter_contigs_against_ref.paf 2> inter_contigs_against_ref.paf.log'.format(m_path, in_num_threads, in_reference_file, in_contigs_file) if not os.path.isfile('inter_contigs_against_ref.paf'): run(cmd) else: cmd = '{} -k19 -w19 -t{} ../../{} {} ' \ '> intra_contigs_against_ref.paf 2> intra_contigs_against_ref.paf.log'.format(m_path, in_num_threads, in_reference_file, in_contigs_file) if not os.path.isfile('intra_contigs_against_ref.paf'): run(cmd) os.chdir(current_path) def align_pms(m_path, num_threads, in_reference_file): current_path = os.getcwd() output_path = current_path + '/pm_alignments' if not os.path.exists(output_path): os.makedirs(output_path) os.chdir('pm_alignments') cmd = '{} -ax asm5 --cs -t{} ../../{} {} ' \ '> pm_against_ref.sam 2> pm_contigs_against_ref.sam.log'.format(m_path, num_threads, in_reference_file, '../ragoo.fasta') if not os.path.isfile('pm_against_ref.sam'): run(cmd) os.chdir(current_path) def get_SVs(sv_min, sv_max, in_ref_file): current_path = os.getcwd() os.chdir('pm_alignments') # Change this when setup.py is ready. Just call script directly cmd = 'sam2delta.py pm_against_ref.sam' if not os.path.isfile('pm_against_ref.sam.delta'): run(cmd) cmd_2 = 'Assemblytics_uniq_anchor.py --delta pm_against_ref.sam.delta --unique-length 10000 --out assemblytics_out --keep-small-uniques' if not os.path.isfile('assemblytics_out.Assemblytics.unique_length_filtered_l10000.delta'): run(cmd_2) cmd_3 = 'Assemblytics_between_alignments.pl assemblytics_out.coords.tab %r %r all-chromosomes exclude-longrange bed > assemblytics_out.variants_between_alignments.bed' %(sv_min, sv_max) if not os.path.isfile('assemblytics_out.variants_between_alignments.bed'): run(cmd_3) cmd_4 = 'Assemblytics_within_alignment.py --delta assemblytics_out.Assemblytics.unique_length_filtered_l10000.delta --min %r > assemblytics_out.variants_within_alignments.bed' %(sv_min) if not os.path.isfile('assemblytics_out.variants_within_alignments.bed'): run(cmd_4) header = "reference\tref_start\tref_stop\tID\tsize\tstrand\ttype\tref_gap_size\tquery_gap_size\tquery_coordinates\tmethod\n" with open('assemblytics_out.variants_between_alignments.bed', 'r')as f1: b1 = f1.read() with open('assemblytics_out.variants_within_alignments.bed', 'r') as f2: b2 = f2.read() with open('assemblytics_out.Assemblytics_structural_variants.bed', 'w') as f: f.write(header) # Might need to add newlines here f.write(b1) f.write(b2) # Filter out SVs caused by gaps cmd_5 = 'filter_gap_SVs.py ../../%s' %(in_ref_file) run(cmd_5) os.chdir(current_path) def align_reads(m_path, num_threads, in_ctg_file, reads, tech='ont'): current_path = os.getcwd() output_path = current_path + '/ctg_alignments' if not os.path.exists(output_path): os.makedirs(output_path) os.chdir('ctg_alignments') if tech == 'sr': cmd = '{} -x sr -t{} ../../{} ../../{} ' \ '> reads_against_ctg.paf 2> reads_against_ctg.paf.log'.format(m_path, num_threads, in_ctg_file, reads) elif tech == 'corr': cmd = '{} -x asm10 -t{} ../../{} ../../{} ' \ '> reads_against_ctg.paf 2> reads_against_ctg.paf.log'.format(m_path, num_threads, in_ctg_file, reads) else: raise ValueError("Only 'sr' or 'corr' are accepted for read type.") if not os.path.isfile('reads_against_ctg.paf'): run(cmd) os.chdir(current_path) if __name__ == "__main__": import os import argparse parser = argparse.ArgumentParser(description='order and orient contigs according to minimap2 alignments to a reference (v1.1)') parser.add_argument("contigs", metavar="<contigs.fasta>", type=str, help="fasta file with contigs to be ordered and oriented (gzipped allowed)") parser.add_argument("reference", metavar="<reference.fasta>", type=str, help="reference fasta file (gzipped allowed)") #parser.add_argument("-o", metavar="PATH", type=str, default="ragoo_output", help="output directory name") parser.add_argument("-e", metavar="<exclude.txt>", type=str, default="", help="single column text file of reference headers to ignore") parser.add_argument("-gff", metavar="<annotations.gff>", type=str, default='', help="lift-over gff features to chimera-broken contigs") parser.add_argument("-m", metavar="PATH", type=str, default="minimap2", help='path to minimap2 executable') parser.add_argument("-b", action='store_true', default=False, help="Break chimeric contigs") parser.add_argument("-R", metavar="<reads.fasta>", type=str, default="", help="Turns on misassembly correction. Align provided reads to the contigs to aid misassembly correction. fastq or fasta allowed. Gzipped files allowed. Turns off '-b'.") parser.add_argument("-T", metavar="sr", type=str, default="", help="Type of reads provided by '-R'. 'sr' and 'corr' accepted for short reads and error corrected long reads respectively.") parser.add_argument("-p", metavar="5", type=int, default=5, help=argparse.SUPPRESS) parser.add_argument("-l", metavar="10000", type=int, default=10000, help=argparse.SUPPRESS) parser.add_argument("-r", metavar="100000", type=int, default=100000, help="(with -b) this many bp of >1 reference sequence must be covered for a contig to be considered an interchromosomal chimera.") parser.add_argument("-c", metavar="1000000", type=int, default=1000000, help="(with -b) distance threshold between consecutive alignments with respect to the contig.") parser.add_argument("-d", metavar="2000000", type=int, default=2000000, help="(with -b) distance threshold between consecutive alignments with respect to the reference.") parser.add_argument("-t", metavar="3", type=int, default=3, help="Number of threads when running minimap.") parser.add_argument("-g", metavar="100", type=int, default=100, help="Gap size for padding in pseudomolecules.") parser.add_argument("-s", action='store_true', default=False, help="Call structural variants") parser.add_argument("-a", metavar="50", type=int, default=50, help=argparse.SUPPRESS) parser.add_argument("-f", metavar="10000", type=int, default=10000, help=argparse.SUPPRESS) parser.add_argument("-i", metavar="0.2", type=float, default=0.2, help="Minimum grouping confidence score needed to be localized.") parser.add_argument("-j", metavar="<skip.txt>", type=str, default="", help="List of contigs to automatically put in chr0.") parser.add_argument("-C", action='store_true', default=False, help="Write unplaced contigs individually instead of making a chr0") # Get the command line arguments args = parser.parse_args() contigs_file = args.contigs reference_file = args.reference #output_path = args.o exclude_file = args.e minimap_path = args.m break_chimeras = args.b gff_file = args.gff min_break_pct = args.p min_len = args.l min_range = args.r intra_wrt_ref_min = args.d intra_wrt_ctg_min = args.c t = args.t g = args.g call_svs = args.s min_assemblytics = args.a max_assemblytics = args.f group_score_thresh = args.i skip_file = args.j corr_reads = args.R corr_reads_tech = args.T make_chr0 = not args.C if corr_reads: log("Misassembly correction has been turned on. This automatically inactivates chimeric contig correction.") break_chimeras = False # Make sure that if -R, -T has been specified if corr_reads and not corr_reads_tech: raise ValueError("'-T' must be provided when using -R.") skip_ctg = [] if skip_file: with open(skip_file) as f: for line in f: skip_ctg.append(line.rstrip()) current_path = os.getcwd() output_path = current_path + '/ragoo_output' if not os.path.exists(output_path): os.makedirs(output_path) os.chdir(output_path) # Run minimap2 cmd = '{} -k19 -w19 -t{} ../{} ../{} ' \ '> contigs_against_ref.paf 2> contigs_against_ref.paf.log'.format(minimap_path, t, reference_file, contigs_file) if not os.path.isfile('contigs_against_ref.paf'): run(cmd) # Read in the minimap2 alignments just generated log('Reading alignments') alns = read_paf_alignments('contigs_against_ref.paf') alns = clean_alignments(alns, l=1000, in_exclude_file=exclude_file) # Process the gff file if gff_file: log('Getting gff features') features = defaultdict(list) z = GFFReader('../' + gff_file) for i in z.parse_gff(): features[i.seqname].append(i) # Break chimeras if desired if break_chimeras: # Record how many contigs are broken total_inter_broken = 0 total_intra_broken = 0 alns = clean_alignments(alns, l=10000, in_exclude_file=exclude_file, uniq_anchor_filter=True) # Process contigs log('Getting contigs') if contigs_file.endswith(".gz"): contigs_dict = read_gz_contigs('../' + contigs_file) else: contigs_dict = read_contigs('../' + contigs_file) log('Finding interchromosomally chimeric contigs') all_chimeras = dict() for i in alns.keys(): ref_parts = get_ref_parts(alns[i], min_len, min_break_pct, min_range) if len(ref_parts) > 1: all_chimeras[i] = ref_parts log('Finding break points and breaking interchromosomally chimeric contigs') break_intervals = dict() for i in all_chimeras.keys(): break_intervals[i] = cluster_contig_alns(i, alns, all_chimeras[i], min_len) # If its just going to break it into the same thing, skip it. if len(break_intervals[i]) <= 1: continue if gff_file: # If desired, ensure that breakpoints don't disrupt any gff intervals break_intervals[i] = avoid_gff_intervals(break_intervals[i], features[i]) features = update_gff(features, break_intervals[i], i) # Break contigs according to the final break points contigs_dict = break_contig(contigs_dict, i, break_intervals[i]) total_inter_broken += 1 # Next, need to re-align before finding intrachromosomal chimeras # First, write out the interchromosomal chimera broken fasta out_inter_fasta = contigs_file[:contigs_file.rfind('.')] + '.inter.chimera.broken.fa' if gff_file: out_gff = gff_file[:gff_file.rfind('.')] + '.inter.chimera_broken.gff' write_broken_files(contigs_dict, out_inter_fasta, features, out_gff) else: write_broken_files(contigs_dict, out_inter_fasta) # Next, realign the chimera broken contigs align_breaks('inter', minimap_path, reference_file, out_inter_fasta, t) # Now, use those new alignments for intrachromosomal chimeras log('Reading interchromosomal chimera broken alignments') inter_alns = read_paf_alignments('chimera_break/inter_contigs_against_ref.paf') inter_alns = clean_alignments(inter_alns, l=1000, in_exclude_file=exclude_file) log('Finding intrachromosomally chimeric contigs') # Find intrachromosomally chimeric contigs for i in inter_alns.keys(): intra = get_intra_contigs(inter_alns[i], 15000, intra_wrt_ref_min, intra_wrt_ctg_min) if intra: if gff_file: intra_break_intervals = avoid_gff_intervals(intra[1], features[intra[0]]) else: intra_break_intervals = intra[1] # Check if the avoidance of gff intervals pushed the break point to the end of the contig. if intra_break_intervals[-1][0] == intra_break_intervals[-1][1]: continue # break the contigs and update features if desired contigs_dict = break_contig(contigs_dict, intra[0], intra_break_intervals) total_intra_broken += 1 if gff_file: features = update_gff(features, intra_break_intervals, intra[0]) # Write out the intrachromosomal information out_intra_fasta = contigs_file[:contigs_file.rfind('.')] + '.intra.chimera.broken.fa' if gff_file: out_intra_gff = gff_file[:gff_file.rfind('.')] + '.intra.chimera_broken.gff' write_broken_files(contigs_dict, out_intra_fasta, features, out_intra_gff) else: write_broken_files(contigs_dict, out_intra_fasta) # Re align the contigs # Next, realign the chimera broken contigs align_breaks('intra', minimap_path, reference_file, out_intra_fasta, t) # Read in alignments of intrachromosomal chimeras and proceed with ordering and orientation log('Reading intrachromosomal chimera broken alignments') alns = read_paf_alignments('chimera_break/intra_contigs_against_ref.paf') alns = clean_alignments(alns, l=1000, in_exclude_file=exclude_file) contigs_file = '/ragoo_output/chimera_break/' + out_intra_fasta log('The total number of interchromasomally chimeric contigs broken is %r' % total_inter_broken) log('The total number of intrachromasomally chimeric contigs broken is %r' % total_intra_broken) # Check if misassembly correction is turned on. This is mutually exclusive with chimeric contig correction if corr_reads: # Align the raw reads to the assembly. log('Aligning raw reads to contigs') align_reads(minimap_path, t, contigs_file, corr_reads, corr_reads_tech) log('Computing contig coverage') cov_map = ReadCoverage('ctg_alignments/reads_against_ctg.paf') alns = clean_alignments(alns, l=10000, in_exclude_file=exclude_file, uniq_anchor_filter=True, merge=True) # Get the initial candidate break points. candidate_breaks = dict() for i in alns: candidates = alns[i].get_break_candidates() if candidates: candidate_breaks[i] = candidates # Validate each breakpoint by checking for excessively high or low coverage # Also, if a gff is provided, check to ensure that we don't break within a gff feature interval val_candidate_breaks = dict() for i in candidate_breaks: candidates = cov_map.check_break_cov(i, candidate_breaks[i]) if gff_file: candidates = remove_gff_breaks(features[i], candidates) if candidates: val_candidate_breaks[i] = list(set(candidates)) if gff_file: features = update_misasm_features(features, val_candidate_breaks[i], i, cov_map.ctg_lens[i]) # Break the contigs if gff_file: out_misasm_gff = gff_file[:gff_file.rfind('.')] + '.misasm.broken.gff' write_misasm_broken_ctgs(contigs_file, val_candidate_breaks, contigs_file[:contigs_file.rfind('.')], in_gff=features, in_gff_name=out_misasm_gff) else: write_misasm_broken_ctgs(contigs_file, val_candidate_breaks, contigs_file[:contigs_file.rfind('.')]) # Align the broken contigs back to the reference align_misasm_broken(contigs_file[:contigs_file.rfind('.')]) alns = read_paf_alignments('ctg_alignments/contigs_brk_against_ref.paf') alns = clean_alignments(alns, l=1000, in_exclude_file=exclude_file) contigs_file = '/ragoo_output/ctg_alignments/' + contigs_file[:contigs_file.rfind('.')] + ".misasm.break.fa" # Assign each contig to a corresponding reference chromosome. log('Assigning contigs') all_unique_contigs = dict() for i in alns.keys(): all_unique_contigs[i] = UniqueContigAlignment(alns[i]) # Add to this the list of headers that did not make it write_contig_clusters(all_unique_contigs, group_score_thresh, skip_ctg) log('Ordering and orienting contigs') order_orient_contigs(all_unique_contigs, alns) log('Creating pseudomolecules') create_pseudomolecules(contigs_file, all_unique_contigs, g, make_chr0) if call_svs: log('Aligning pseudomolecules to reference') align_pms(minimap_path, t, reference_file) log('Getting structural variants') get_SVs(min_assemblytics, max_assemblytics, reference_file) log('goodbye')