Mercurial > repos > dereeper > roary_plots
comparison Roary/bin/create_pan_genome_plots.R @ 0:c47a5f61bc9f draft
Uploaded
| author | dereeper | 
|---|---|
| date | Fri, 14 May 2021 20:27:06 +0000 | 
| parents | |
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| -1:000000000000 | 0:c47a5f61bc9f | 
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 # ABSTRACT: Create R plots | |
| 3 # PODNAME: create_plots.R | |
| 4 # Take the output files from the pan genome pipeline and create nice plots. | |
| 5 library(ggplot2) | |
| 6 | |
| 7 | |
| 8 mydata = read.table("number_of_new_genes.Rtab") | |
| 9 boxplot(mydata, data=mydata, main="Number of new genes", | |
| 10 xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) | |
| 11 | |
| 12 mydata = read.table("number_of_conserved_genes.Rtab") | |
| 13 boxplot(mydata, data=mydata, main="Number of conserved genes", | |
| 14 xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) | |
| 15 | |
| 16 mydata = read.table("number_of_genes_in_pan_genome.Rtab") | |
| 17 boxplot(mydata, data=mydata, main="No. of genes in the pan-genome", | |
| 18 xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) | |
| 19 | |
| 20 mydata = read.table("number_of_unique_genes.Rtab") | |
| 21 boxplot(mydata, data=mydata, main="Number of unique genes", | |
| 22 xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) | |
| 23 | |
| 24 mydata = read.table("blast_identity_frequency.Rtab") | |
| 25 plot(mydata,main="Number of blastp hits with different percentage identity", xlab="Blast percentage identity", ylab="No. blast results") | |
| 26 | |
| 27 | |
| 28 library(ggplot2) | |
| 29 conserved = colMeans(read.table("number_of_conserved_genes.Rtab")) | |
| 30 total = colMeans(read.table("number_of_genes_in_pan_genome.Rtab")) | |
| 31 | |
| 32 genes = data.frame( genes_to_genomes = c(conserved,total), | |
| 33 genomes = c(c(1:length(conserved)),c(1:length(conserved))), | |
| 34 Key = c(rep("Conserved genes",length(conserved)), rep("Total genes",length(total))) ) | |
| 35 | |
| 36 ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ | |
| 37 theme_classic() + | |
| 38 ylim(c(1,max(total)))+ | |
| 39 xlim(c(1,length(total)))+ | |
| 40 xlab("No. of genomes") + | |
| 41 ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(0,1),legend.position=c(0,1))+ | |
| 42 ggsave(filename="conserved_vs_total_genes.png", scale=1) | |
| 43 | |
| 44 ###################### | |
| 45 | |
| 46 unique_genes = colMeans(read.table("number_of_unique_genes.Rtab")) | |
| 47 new_genes = colMeans(read.table("number_of_new_genes.Rtab")) | |
| 48 | |
| 49 genes = data.frame( genes_to_genomes = c(unique_genes,new_genes), | |
| 50 genomes = c(c(1:length(unique_genes)),c(1:length(unique_genes))), | |
| 51 Key = c(rep("Unique genes",length(unique_genes)), rep("New genes",length(new_genes))) ) | |
| 52 | |
| 53 ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ | |
| 54 theme_classic() + | |
| 55 ylim(c(1,max(unique_genes)))+ | |
| 56 xlim(c(1,length(unique_genes)))+ | |
| 57 xlab("No. of genomes") + | |
| 58 ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(1,1),legend.position=c(1,1))+ | |
| 59 ggsave(filename="unique_vs_new_genes.png", scale=1) | 
