Mercurial > repos > dereeper > sniplay
view VCF2Hapmap/vcf2FastaAndHapmap.xml @ 11:15b23cdde685 draft
planemo upload commit 305985afd3b7c3d47f531149c2f1a279af2d12aa-dirty
author | dereeper |
---|---|
date | Fri, 20 Apr 2018 09:04:25 -0400 |
parents | c6640c49fd01 |
children |
line wrap: on
line source
<tool id="sniplay_vcf2fastaandhapmap" name="VCF to Hapmap" version="2.0.0"> <!-- [REQUIRED] Tool description displayed after the tool name --> <description> Convert VCF to Hapmap </description> <!-- [OPTIONAL] 3rd party tools, binaries, modules... required for the tool to work --> <requirements> <requirement type="binary">perl</requirement> </requirements> <!-- [STRONGLY RECOMMANDED] Exit code rules --> <stdio> <!-- [HELP] If no exit code rule is defined, the tool will stop if anything is written to STDERR --> <exit_code range="1:" level="fatal" /> </stdio> <!-- [OPTIONAL] Command to be executed to get the tool's version string --> <version_command> <!-- tool_binary -v --> </version_command> <!-- [REQUIRED] The command to execute --> <command interpreter="bash"> vcf2FastaAndHapmap.sh $filein $fileout $optional.file_opt #if str( $optional.file_opt ) != "none": $fileout_seq $fileout_fa1 $filefasta #if str( $optional.file_opt ) == "fasta_gff": $filegff #end if #end if </command> <!-- [REQUIRED] Input files and tool parameters --> <inputs> <param name="filein" type="data" format="vcf" optional="false" label="VCF input" /> <param name="fileout_label" type="text" value="input" optional="false" label="Output file basename"/> <conditional name="optional" > <param name="file_opt" type="select" label="Optional files" > <option value="none" selected="true">No</option> <option value="fasta">Fasta</option> <option value="fasta_gff">Fasta and GFF</option> </param> <when value="none" /> <when value="fasta"> <param name="filefasta" type="data" format="fasta" optional="false" label="Fasta file input" /> </when> <when value="fasta_gff"> <param name="filefasta" type="data" format="fasta" optional="false" label="Fasta file input" /> <param name="filegff" type="data" format="gff" optional="false" label="GFF file input" help="VCF file must be annotated" /> </when> </conditional> </inputs> <!-- [REQUIRED] Output files --> <outputs> <data name="fileout" format="txt" label="${fileout_label}.hapmap" /> <data name="fileout_seq" format="txt" label="${fileout_label}.flanking.txt"> <filter>(optional['file_opt'] != 'none')</filter> </data> <data name="fileout_fa1" format="fasta" label="${fileout_label}.gene_alignment.fas"> <filter>(optional['file_opt'] == 'fasta_gff')</filter> </data> </outputs> <!-- [OPTIONAL] Tests to be run manually by the Galaxy admin --> <tests> <!-- [HELP] Test files have to be in the ~/test-data directory --> <test> <param name="filein" value="vcf2fastaAndHapmap-sample.vcf" /> <param name="file_opt" value="none" /> <output name="fileout" file="vcf2fastaAndHapmap-result1.hapmap" /> </test> <test> <param name="filein" value="vcf2fastaAndHapmap-sample.vcf" /> <param name="file_opt" value="fasta" /> <param name="filefasta" value="vcf2fastaAndHapmap-reference.fa" /> <output name="fileout" file="vcf2fastaAndHapmap-result2.hapmap" /> <output name="fileout_seq" file="vcf2fastaAndHapmap-result2.flanking.txt" /> </test> <test> <param name="filein" value="vcf2fastaAndHapmap-sample.vcf" /> <param name="file_opt" value="fasta_gff" /> <param name="filefasta" value="vcf2fastaAndHapmap-reference.fa" /> <param name="filegff" value="vcf2fastaAndHapmap-reference.gff" /> <output name="fileout" file="vcf2fastaAndHapmap-result3.hapmap" /> <output name="fileout_seq" file="vcf2fastaAndHapmap-result3.flanking.txt" /> <output name="fileout_fa1" file="vcf2fastaAndHapmap-result3.gene_alignment.fas" compare="sim_size" delta="0"/> </test> </tests> <!-- [OPTIONAL] Help displayed in Galaxy --> <help><![CDATA[ .. class:: infomark **Authors** Dereeper Alexis (alexis.dereeper@ird.fr), IRD, South Green platform | **Please cite** "SNiPlay3: a web-based application for exploration and large scale analyses of genomic variations", **Dereeper A. et al.**, Nucl. Acids Res. (1 july 2015) 43 (W1). .. class:: infomark **Galaxy integration** Provided by Southgreen & Andres Gwendoline (Institut Français de Bioinformatique) & Marcon Valentin (IFB & INRA) .. class:: infomark **Support** For any questions about Galaxy integration, please send an e-mail to alexis.dereeper@ird.fr --------------------------------------------------- ======================= VCF to Hapmap ======================= ----------- Description ----------- | Convert VCF to Hapmap. Additionnaly it creates flanking sequences of variants if fasta reference is provided. | Furthermore it also creates fasta alignment of genes if GFF annotation is provided ---------- Input file ---------- VCF file VCF file with all SNPs ---------- Parameters ---------- Output file basename Prefix for the output VCF file Optional files To add additional files fasta file and GFF file. ------------ Output files ------------ Hapmap file Hapmap converted file Additional files If you add fasta and/or GFF file as reference, you obtain 3 more files : One with flanking sequence and a fasta file --------------------------------------------------- --------------- Working example --------------- Input files =========== VCF file --------- :: #fileformat=VCFv4.1 #FILTER=<ID=LowQual,Description="Low quality"> #FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed"> [...] CHROM POS ID REF ALT QUAL FILTER INFO FORMAT CATB1 chr1 2209 . G T 213.84 . AC=2;AF=1.00;AN=2;DP=7;Dels=0.00;FS=0.000;HaplotypeScore=0.0000;MLEAC=2;MLEAF=1.00;MQ=41.50;MQ0=0;QD=30.55;EFF=DOWNSTREAM(MODIFIER||||Cc01g00020|mRNA||GSCOCT00012438001|),UPSTREAM(MODIFIER||||Cc01g00010|mRNA||GSCOCT00012439001|) GT:AD:DP:GQ:PL 1/1:0,7:7:18:242,18,0 Fasta file ---------- :: >chr1 CAGTAAAGTTTGCAAAGAGATTCTGGCAAAGTT Parameters ========== Output name -> input Optional files -> Fasta Output files ============ input.hapmap ------------ :: rs# alleles chrom pos strand assembly# center protLSID assayLSID panelLSID QCcode CATB1 chr1:2209 G/T chr1 2209 + NA NA NA NA NA NA GG TT chr1:2232 A/C chr1 2232 + NA NA NA NA NA NA AA CC input.flanking.txt ------------------ :: chr1-2209,GTCGCATCTGCAGCATATAGCCAACCTTCAACTTGCAGCTAAAACTCATCATCTCTTTCT[G/T]ACTGGCTTAACGATATTGTAAGMTGACTCAGAGGCCCACTTTTTTTTTAAAAATYAGCCT,0,0,0,Project_name,0,diploid,Other,Forward chr1-2232,ACCTTCAACTTGCAGCTAAAACTCATCATCTCTTTCTKACTGGCTTAACGATATTGTAAG[A/C]TGACTCAGAGGCCCACTTTTTTTTTAAAAATYAGCCTGTCCCCAGCCGTGCTGACTGGGC,0,0,0,Project_name,0,diploid,Other,Forward input.gene_alignment.fas ------------------------ :: >chr1_CATB1_1 TCCTCAAACTTTCTTCAGCGCCTATGAATACAGCGTGCTATAGTTACGTGGGGCGTTT ]]></help> <citations> <!-- [HELP] As DOI or BibTex entry --> <citation type="bibtex">@article{Dereeper03062015, author = {Dereeper, Alexis and Homa, Felix and Andres, Gwendoline and Sempere, Guilhem and Sarah, Gautier and Hueber, Yann and Dufayard, Jean-François and Ruiz, Manuel}, title = {SNiPlay3: a web-based application for exploration and large scale analyses of genomic variations}, year = {2015}, doi = {10.1093/nar/gkv351}, abstract ={SNiPlay is a web-based tool for detection, management and analysis of genetic variants including both single nucleotide polymorphisms (SNPs) and InDels. Version 3 now extends functionalities in order to easily manage and exploit SNPs derived from next generation sequencing technologies, such as GBS (genotyping by sequencing), WGRS (whole gre-sequencing) and RNA-Seq technologies. Based on the standard VCF (variant call format) format, the application offers an intuitive interface for filtering and comparing polymorphisms using user-defined sets of individuals and then establishing a reliable genotyping data matrix for further analyses. Namely, in addition to the various scaled-up analyses allowed by the application (genomic annotation of SNP, diversity analysis, haplotype reconstruction and network, linkage disequilibrium), SNiPlay3 proposes new modules for GWAS (genome-wide association studies), population stratification, distance tree analysis and visualization of SNP density. Additionally, we developed a suite of Galaxy wrappers for each step of the SNiPlay3 process, so that the complete pipeline can also be deployed on a Galaxy instance using the Galaxy ToolShed procedure and then be computed as a Galaxy workflow. SNiPlay is accessible at http://sniplay.southgreen.fr.}, URL = {http://nar.oxfordjournals.org/content/early/2015/06/03/nar.gkv351.abstract}, eprint = {http://nar.oxfordjournals.org/content/early/2015/06/03/nar.gkv351.full.pdf+html}, journal = {Nucleic Acids Research} } }</citation> </citations> </tool>