| 0 | 1 #!/usr/bin/env python | 
|  | 2 | 
|  | 3 import sys | 
|  | 4 from rpy import * | 
|  | 5 import numpy | 
|  | 6 | 
|  | 7 def stop_err(msg): | 
|  | 8     sys.stderr.write(msg) | 
|  | 9     sys.exit() | 
|  | 10 | 
|  | 11 | 
|  | 12 infile = sys.argv[1] | 
|  | 13 y_col = int(sys.argv[2])-1 | 
|  | 14 x_cols = sys.argv[3].split(',') | 
|  | 15 outfile = sys.argv[4] | 
|  | 16 outfile2 = sys.argv[5] | 
|  | 17 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | 
|  | 18 fout = open(outfile,'w') | 
|  | 19 | 
|  | 20 for i, line in enumerate( file ( infile )): | 
|  | 21     line = line.rstrip('\r\n') | 
|  | 22     if len( line )>0 and not line.startswith( '#' ): | 
|  | 23         elems = line.split( '\t' ) | 
|  | 24         break | 
|  | 25     if i == 30: | 
|  | 26         break # Hopefully we'll never get here... | 
|  | 27 | 
|  | 28 if len( elems )<1: | 
|  | 29     stop_err( "The data in your input dataset is either missing or not formatted properly." ) | 
|  | 30 | 
|  | 31 y_vals = [] | 
|  | 32 x_vals = [] | 
|  | 33 | 
|  | 34 for k, col in enumerate(x_cols): | 
|  | 35     x_cols[k] = int(col)-1 | 
|  | 36     x_vals.append([]) | 
|  | 37 | 
|  | 38 NA = 'NA' | 
|  | 39 for ind, line in enumerate( file( infile ) ): | 
|  | 40     if line and not line.startswith( '#' ): | 
|  | 41         try: | 
|  | 42             fields = line.split("\t") | 
|  | 43             try: | 
|  | 44                 yval = float(fields[y_col]) | 
|  | 45             except Exception, ey: | 
|  | 46                 yval = r('NA') | 
|  | 47             y_vals.append(yval) | 
|  | 48             for k, col in enumerate(x_cols): | 
|  | 49                 try: | 
|  | 50                     xval = float(fields[col]) | 
|  | 51                 except Exception, ex: | 
|  | 52                     xval = r('NA') | 
|  | 53                 x_vals[k].append(xval) | 
|  | 54         except: | 
|  | 55             pass | 
|  | 56 | 
|  | 57 response_term = "" | 
|  | 58 | 
|  | 59 x_vals1 = numpy.asarray(x_vals).transpose() | 
|  | 60 | 
|  | 61 dat = r.list(x=array(x_vals1), y=y_vals) | 
|  | 62 | 
|  | 63 r.library("leaps") | 
|  | 64 | 
|  | 65 set_default_mode(NO_CONVERSION) | 
|  | 66 try: | 
|  | 67     leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat)) | 
|  | 68 except RException, rex: | 
|  | 69     stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | 
|  | 70 set_default_mode(BASIC_CONVERSION) | 
|  | 71 | 
|  | 72 summary = r.summary(leaps) | 
|  | 73 tot = len(x_vals) | 
|  | 74 pattern = "[" | 
|  | 75 for i in range(tot): | 
|  | 76     pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' ' | 
|  | 77 pattern = pattern.strip() + ']' | 
|  | 78 print >> fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" % (pattern) | 
|  | 79 for ind, item in enumerate(summary['outmat']): | 
|  | 80     print >> fout, "%s\t%s\t%s\t%s\t%s\t%s" % (str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind]) | 
|  | 81 | 
|  | 82 | 
|  | 83 r.pdf( outfile2, 8, 8 ) | 
|  | 84 r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion") | 
|  | 85 r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion") | 
|  | 86 r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion") | 
|  | 87 r.plot(leaps, scale="bic", main="Best subsets using bic Criterion") | 
|  | 88 | 
|  | 89 r.dev_off() |