Mercurial > repos > devteam > canonical_correlation_analysis
comparison cca.py @ 0:9bc0c48a027f draft default tip
Imported from capsule None
| author | devteam |
|---|---|
| date | Mon, 19 May 2014 12:34:48 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:9bc0c48a027f |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 import sys, string | |
| 4 from rpy import * | |
| 5 import numpy | |
| 6 | |
| 7 def stop_err(msg): | |
| 8 sys.stderr.write(msg) | |
| 9 sys.exit() | |
| 10 | |
| 11 infile = sys.argv[1] | |
| 12 x_cols = sys.argv[2].split(',') | |
| 13 y_cols = sys.argv[3].split(',') | |
| 14 | |
| 15 x_scale = x_center = "FALSE" | |
| 16 if sys.argv[4] == 'both': | |
| 17 x_scale = x_center = "TRUE" | |
| 18 elif sys.argv[4] == 'center': | |
| 19 x_center = "TRUE" | |
| 20 elif sys.argv[4] == 'scale': | |
| 21 x_scale = "TRUE" | |
| 22 | |
| 23 y_scale = y_center = "FALSE" | |
| 24 if sys.argv[5] == 'both': | |
| 25 y_scale = y_center = "TRUE" | |
| 26 elif sys.argv[5] == 'center': | |
| 27 y_center = "TRUE" | |
| 28 elif sys.argv[5] == 'scale': | |
| 29 y_scale = "TRUE" | |
| 30 | |
| 31 std_scores = "FALSE" | |
| 32 if sys.argv[6] == "yes": | |
| 33 std_scores = "TRUE" | |
| 34 | |
| 35 outfile = sys.argv[7] | |
| 36 outfile2 = sys.argv[8] | |
| 37 | |
| 38 fout = open(outfile,'w') | |
| 39 elems = [] | |
| 40 for i, line in enumerate( file ( infile )): | |
| 41 line = line.rstrip('\r\n') | |
| 42 if len( line )>0 and not line.startswith( '#' ): | |
| 43 elems = line.split( '\t' ) | |
| 44 break | |
| 45 if i == 30: | |
| 46 break # Hopefully we'll never get here... | |
| 47 | |
| 48 if len( elems )<1: | |
| 49 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 50 | |
| 51 x_vals = [] | |
| 52 | |
| 53 for k,col in enumerate(x_cols): | |
| 54 x_cols[k] = int(col)-1 | |
| 55 x_vals.append([]) | |
| 56 | |
| 57 y_vals = [] | |
| 58 | |
| 59 for k,col in enumerate(y_cols): | |
| 60 y_cols[k] = int(col)-1 | |
| 61 y_vals.append([]) | |
| 62 | |
| 63 skipped = 0 | |
| 64 for ind,line in enumerate( file( infile )): | |
| 65 if line and not line.startswith( '#' ): | |
| 66 try: | |
| 67 fields = line.strip().split("\t") | |
| 68 valid_line = True | |
| 69 for col in x_cols+y_cols: | |
| 70 try: | |
| 71 assert float(fields[col]) | |
| 72 except: | |
| 73 skipped += 1 | |
| 74 valid_line = False | |
| 75 break | |
| 76 if valid_line: | |
| 77 for k,col in enumerate(x_cols): | |
| 78 try: | |
| 79 xval = float(fields[col]) | |
| 80 except: | |
| 81 xval = NaN# | |
| 82 x_vals[k].append(xval) | |
| 83 for k,col in enumerate(y_cols): | |
| 84 try: | |
| 85 yval = float(fields[col]) | |
| 86 except: | |
| 87 yval = NaN# | |
| 88 y_vals[k].append(yval) | |
| 89 except: | |
| 90 skipped += 1 | |
| 91 | |
| 92 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 93 y_vals1 = numpy.asarray(y_vals).transpose() | |
| 94 | |
| 95 x_dat= r.list(array(x_vals1)) | |
| 96 y_dat= r.list(array(y_vals1)) | |
| 97 | |
| 98 try: | |
| 99 r.suppressWarnings(r.library("yacca")) | |
| 100 except: | |
| 101 stop_err("Missing R library yacca.") | |
| 102 | |
| 103 set_default_mode(NO_CONVERSION) | |
| 104 try: | |
| 105 xcolnames = ["c%d" %(el+1) for el in x_cols] | |
| 106 ycolnames = ["c%d" %(el+1) for el in y_cols] | |
| 107 cc = r.cca(x=x_dat, y=y_dat, xlab=xcolnames, ylab=ycolnames, xcenter=r(x_center), ycenter=r(y_center), xscale=r(x_scale), yscale=r(y_scale), standardize_scores=r(std_scores)) | |
| 108 ftest = r.F_test_cca(cc) | |
| 109 except RException, rex: | |
| 110 stop_err("Encountered error while performing CCA on the input data: %s" %(rex)) | |
| 111 | |
| 112 set_default_mode(BASIC_CONVERSION) | |
| 113 summary = r.summary(cc) | |
| 114 | |
| 115 ncomps = len(summary['corr']) | |
| 116 comps = summary['corr'].keys() | |
| 117 corr = summary['corr'].values() | |
| 118 xlab = summary['xlab'] | |
| 119 ylab = summary['ylab'] | |
| 120 | |
| 121 for i in range(ncomps): | |
| 122 corr[comps.index('CV %s' %(i+1))] = summary['corr'].values()[i] | |
| 123 | |
| 124 ftest=ftest.as_py() | |
| 125 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 126 print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in corr])) | |
| 127 print >>fout, "#F-statistic\t%s" %("\t".join(["%.4g" % el for el in ftest['statistic']])) | |
| 128 print >>fout, "#p-value\t%s" %("\t".join(["%.4g" % el for el in ftest['p.value']])) | |
| 129 | |
| 130 print >>fout, "#X-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 131 for i,val in enumerate(summary['xcoef']): | |
| 132 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
| 133 | |
| 134 print >>fout, "#Y-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 135 for i,val in enumerate(summary['ycoef']): | |
| 136 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
| 137 | |
| 138 print >>fout, "#X-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 139 for i,val in enumerate(summary['xstructcorr']): | |
| 140 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
| 141 | |
| 142 print >>fout, "#Y-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 143 for i,val in enumerate(summary['ystructcorr']): | |
| 144 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
| 145 | |
| 146 print >>fout, "#X-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 147 for i,val in enumerate(summary['xcrosscorr']): | |
| 148 print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) | |
| 149 | |
| 150 print >>fout, "#Y-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 151 for i,val in enumerate(summary['ycrosscorr']): | |
| 152 print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) | |
| 153 | |
| 154 r.pdf( outfile2, 8, 8 ) | |
| 155 #r.plot(cc) | |
| 156 for i in range(ncomps): | |
| 157 r.helio_plot(cc, cv = i+1, main = r.paste("Explained Variance for CV",i+1), type = "variance") | |
| 158 r.dev_off() |
