Mercurial > repos > devteam > logistic_regression_vif
diff logistic_regression_vif.py @ 0:bd196d7c1ca9 draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 10:51:26 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/logistic_regression_vif.py Tue Apr 01 10:51:26 2014 -0400 @@ -0,0 +1,167 @@ +#!/usr/bin/env python + +import sys +from rpy import * +import numpy + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + +infile = sys.argv[1] +y_col = int(sys.argv[2])-1 +x_cols = sys.argv[3].split(',') +outfile = sys.argv[4] + + +print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) +fout = open(outfile,'w') +elems = [] +for i, line in enumerate( file( infile ) ): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +y_vals = [] +x_vals = [] + +for k, col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + +NA = 'NA' +for ind, line in enumerate( file( infile )): + if line and not line.startswith( '#' ): + try: + fields = line.split("\t") + try: + yval = float(fields[y_col]) + except: + yval = r('NA') + y_vals.append(yval) + for k, col in enumerate(x_cols): + try: + xval = float(fields[col]) + except: + xval = r('NA') + x_vals[k].append(xval) + except: + pass + +x_vals1 = numpy.asarray(x_vals).transpose() + +check1 = 0 +check0 = 0 +for i in y_vals: + if i == 1: + check1 = 1 + if i == 0: + check0 = 1 +if check1 == 0 or check0 == 0: + sys.exit("Warning: logistic regression must have at least two classes") + +for i in y_vals: + if i not in [1, 0, r('NA')]: + print >> fout, str(i) + sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") + +dat = r.list(x=array(x_vals1), y=y_vals) +novif = 0 +set_default_mode(NO_CONVERSION) +try: + linear_model = r.glm(r("y ~ x"), data=r.na_exclude(dat), family="binomial") +except RException, rex: + stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") +if len(x_cols)>1: + try: + r('suppressPackageStartupMessages(library(car))') + r.assign('dat', dat) + r.assign('ncols', len(x_cols)) + vif = r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx), family="binomial")')) + except RException, rex: + print rex +else: + novif = 1 + +set_default_mode(BASIC_CONVERSION) + +coeffs = linear_model.as_py()['coefficients'] +null_deviance = linear_model.as_py()['null.deviance'] +residual_deviance = linear_model.as_py()['deviance'] +yintercept = coeffs['(Intercept)'] +summary = r.summary(linear_model) +co = summary.get('coefficients', 'NA') +""" +if len(co) != len(x_vals)+1: + stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") +""" + +try: + yintercept = r.round(float(yintercept), digits=10) + pvaly = r.round(float(co[0][3]), digits=10) +except: + pass +print >> fout, "response column\tc%d" % (y_col+1) +tempP = [] +for i in x_cols: + tempP.append('c'+str(i+1)) +tempP = ','.join(tempP) +print >> fout, "predictor column(s)\t%s" % (tempP) +print >> fout, "Y-intercept\t%s" % (yintercept) +print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) + +if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable + try: + slope = r.round(float(coeffs['x']), digits=10) + except: + slope = 'NA' + try: + pval = r.round(float(co[1][3]), digits=10) + except: + pval = 'NA' + print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) + print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) +else: #Multiple regression case with >1 predictors + ind = 1 + while ind < len(coeffs.keys()): + try: + slope = r.round(float(coeffs['x'+str(ind)]), digits=10) + except: + slope = 'NA' + print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) + try: + pval = r.round(float(co[ind][3]), digits=10) + except: + pval = 'NA' + print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) + ind += 1 + +rsq = summary.get('r.squared','NA') + +try: + rsq = r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) + null_deviance = r.round(float(null_deviance), digits=5) + residual_deviance = r.round(float(residual_deviance), digits=5) +except: + pass + +print >> fout, "Null deviance\t%s" % (null_deviance) +print >> fout, "Residual deviance\t%s" % (residual_deviance) +print >> fout, "pseudo R-squared\t%s" % (rsq) +print >> fout, "\n" +print >> fout, 'vif' + +if novif == 0: + py_vif = vif.as_py() + count = 0 + for i in sorted(py_vif.keys()): + print >> fout, 'c'+str(x_cols[count]+1), str(py_vif[i]) + count += 1 +elif novif == 1: + print >> fout, "vif can calculate only when model have more than 1 predictor"