Mercurial > repos > devteam > partialr_square
diff partialR_square.xml @ 0:88ef41de020d draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 10:52:23 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/partialR_square.xml Tue Apr 01 10:52:23 2014 -0400 @@ -0,0 +1,73 @@ +<tool id="partialRsq" name="Compute partial R square" version="1.0.0"> + <description> </description> + <requirements> + <requirement type="package" version="2.11.0">R</requirement> + <requirement type="package" version="1.7.1">numpy</requirement> + <requirement type="package" version="1.0.3">rpy</requirement> + </requirements> + <command interpreter="python"> + partialR_square.py + $input1 + $response_col + $predictor_cols + $out_file1 + 1>/dev/null + </command> + <inputs> + <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/> + <param name="response_col" label="Response column (Y)" type="data_column" data_ref="input1" /> + <param name="predictor_cols" label="Predictor columns (X)" type="data_column" data_ref="input1" multiple="true"> + <validator type="no_options" message="Please select at least one column."/> + </param> + </inputs> + <outputs> + <data format="input" name="out_file1" metadata_source="input1" /> + </outputs> + <requirements> + <requirement type="python-module">rpy</requirement> + </requirements> + <tests> + <!-- Test data with vlid values --> + <test> + <param name="input1" value="regr_inp.tabular"/> + <param name="response_col" value="3"/> + <param name="predictor_cols" value="1,2"/> + <output name="out_file1" file="partialR_result.tabular"/> + </test> + + </tests> + <help> + +.. class:: infomark + +**TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters* + +----- + +.. class:: infomark + +**What it does** + +This tool computes the Partial R squared for all possible variable subsets using the following formula: + +**Partial R squared = [SSE(without i: 1,2,...,p-1) - SSE (full: 1,2,..,i..,p-1) / SSE(without i: 1,2,...,p-1)]**, which denotes the case where the 'i'th predictor is dropped. + + + +In general, **Partial R squared = [SSE(without i: 1,2,...,p-1) - SSE (full: 1,2,..,i..,p-1) / SSE(without i: 1,2,...,p-1)]**, where, + +- SSE (full: 1,2,..,i..,p-1) = Sum of Squares left out by the full set of predictors SSE(X1, X2 … Xp) +- SSE (full: 1,2,..,i..,p-1) = Sum of Squares left out by the set of predictors excluding; for example, if we omit the first predictor, it will be SSE(X2 … Xp). + + +The 4 columns in the output are described below: + +- Column 1 (Model): denotes the variables present in the model +- Column 2 (R-sq): denotes the R-squared value corresponding to the model in Column 1 +- Column 3 (Partial R squared_Terms): denotes the variable/s for which Partial R squared is computed. These are the variables that are absent in the reduced model in Column 1. A '-' in this column indicates that the model in Column 1 is the Full model. +- Column 4 (Partial R squared): denotes the Partial R squared value corresponding to the variable/s in Column 3. A '-' in this column indicates that the model in Column 1 is the Full model. + +*R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.* + + </help> +</tool>