Mercurial > repos > dlalgroup > simtext_app
comparison pmids_to_pubtator_matrix.R @ 0:34ed44f3f85c draft
"planemo upload for repository https://github.com/dlal-group/simtext commit fd3f5b7b0506fbc460f2a281f694cb57f1c90a3c-dirty"
| author | dlalgroup |
|---|---|
| date | Thu, 24 Sep 2020 02:17:05 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:34ed44f3f85c |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 #tool: pmids_to_pubtator_matrix | |
| 3 # | |
| 4 #The tool uses all PMIDs per row and extracts "Gene", "Disease", "Mutation", "Chemical" and "Species" terms of the | |
| 5 #corresponding abstracts, using PubTator annotations. The user can choose from which categories terms should be extracted. | |
| 6 #The extracted terms are united in one large binary matrix, with 0= term not present in abstracts of that row and 1= term | |
| 7 #present in abstracts of that row. The user can decide if the extracted scientific terms should be extracted and used as | |
| 8 #they are or if they should be grouped by their geneIDs/ meshIDs (several terms can often be grouped into one ID). | |
| 9 #äAlso, by default all terms are extracted, otherwise the user can specify a number of most frequent words to be extracted per row. | |
| 10 # | |
| 11 #Input: Output of abstracts_by_pmids or tab-delimited table with columns containing PMIDs. | |
| 12 #The names of the PMID columns should start with "PMID", e.g. "PMID_1", "PMID_2" etc. | |
| 13 # | |
| 14 #Output: Binary matrix in that each column represents one of the extracted terms. | |
| 15 # | |
| 16 # usage: $ pmids_to_pubtator_matrix.R [-h] [-i INPUT] [-o OUTPUT] [-n NUMBER] | |
| 17 # [-c {Genes,Diseases,Mutations,Chemicals,Species} [{Genes,Diseases,Mutations,Chemicals,Species} ...]] | |
| 18 # | |
| 19 # optional arguments: | |
| 20 # -h, --help show help message | |
| 21 # -i INPUT, --input INPUT input file name. add path if file is not in workind directory | |
| 22 # -n NUMBER, --number NUMBER Number of most frequent terms/IDs to extract. By default all terms/IDs are extracted. | |
| 23 # -o OUTPUT, --output OUTPUT output file name. [default "pmids_to_pubtator_matrix_output"] | |
| 24 # -c {Gene,Disease,Mutation,Chemical,Species} [{Genes,Diseases,Mutations,Chemicals,Species} ...], --categories {Gene,Disease,Mutation,Chemical,Species} [{Gene,Disease,Mutation,Chemical,Species} ...] | |
| 25 # Pubtator categories that should be considered. [default "('Gene', 'Disease', 'Mutation','Chemical')"] | |
| 26 | |
| 27 if ( '--install_packages' %in% commandArgs()) { | |
| 28 print('Installing packages') | |
| 29 if (!require('argparse')) install.packages('argparse',repo="http://cran.rstudio.com/"); | |
| 30 if (!require('stringr')) install.packages('stringr',repo="http://cran.rstudio.com/"); | |
| 31 if (!require('RCurl')) install.packages('RCurl',repo="http://cran.rstudio.com/"); | |
| 32 if (!require('stringi')) install.packages('stringi',repo="http://cran.rstudio.com/"); | |
| 33 } | |
| 34 | |
| 35 suppressPackageStartupMessages(library("argparse")) | |
| 36 library('stringr') | |
| 37 library('stringi') | |
| 38 library('RCurl') | |
| 39 | |
| 40 parser <- ArgumentParser() | |
| 41 | |
| 42 parser$add_argument("-i", "--input", | |
| 43 help = "input fie name. add path if file is not in workind directory") | |
| 44 parser$add_argument("-o", "--output", default="pmids_to_pubtator_matrix_output", | |
| 45 help = "output file name. [default \"%(default)s\"]") | |
| 46 parser$add_argument("-c", "--categories", choices=c("Gene", "Disease", "Mutation", "Chemical", "Species"), nargs="+", | |
| 47 default= c("Gene", "Disease", "Mutation", "Chemical"), | |
| 48 help = "Pubtator categories that should be considered. [default \"%(default)s\"]") | |
| 49 parser$add_argument("-b", "--byid", action="store_true", default=FALSE, | |
| 50 help="If you want to find common gene IDs / mesh IDs instead of scientific terms.") | |
| 51 parser$add_argument("-n", "--number", default=NULL, type="integer", | |
| 52 help="Number of most frequent terms/IDs to extract. By default all terms/IDs are extracted.") | |
| 53 parser$add_argument("--install_packages", action="store_true", default=FALSE, | |
| 54 help="If you want to auto install missing required packages.") | |
| 55 | |
| 56 args <- parser$parse_args() | |
| 57 | |
| 58 | |
| 59 data = read.delim(args$input, stringsAsFactors=FALSE, header = TRUE, sep='\t') | |
| 60 | |
| 61 pmid_cols_index <- grep(c("PMID"), names(data)) | |
| 62 word_matrix = data.frame() | |
| 63 dict.table = data.frame() | |
| 64 pmids_count <- 0 | |
| 65 pubtator_max_ids = 100 | |
| 66 | |
| 67 get_pubtator_terms = function(pmids, categories){ | |
| 68 | |
| 69 table = NULL | |
| 70 for (pmid_split in split(pmids, ceiling(seq_along(pmids)/pubtator_max_ids))){ | |
| 71 out.data = NULL | |
| 72 try_num <- 1 | |
| 73 t_0 <- Sys.time() | |
| 74 | |
| 75 while(TRUE) { | |
| 76 | |
| 77 # Timing check: kill at 3 min | |
| 78 if (try_num > 1){ | |
| 79 cat("Connection problem. Please wait. Try number:",try_num,"\n") | |
| 80 Sys.sleep(time = 2*try_num) | |
| 81 } | |
| 82 try_num <- try_num + 1 | |
| 83 | |
| 84 t_1 <- Sys.time() | |
| 85 | |
| 86 if(as.numeric(difftime(t_1, t_0, units = "mins")) > 3){ | |
| 87 message("Killing the request! Something is not working. Please, try again later","\n") | |
| 88 return(table) | |
| 89 } | |
| 90 out.data <- tryCatch({ | |
| 91 getURL(paste("https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/pubtator?pmids=", | |
| 92 paste(pmid_split, collapse=","), sep = "")) | |
| 93 }, error = function(e) { | |
| 94 print(e) | |
| 95 next | |
| 96 }, finally = { | |
| 97 Sys.sleep(0) | |
| 98 }) | |
| 99 | |
| 100 if(!is.null(out.data)){ | |
| 101 out.data = unlist(strsplit(out.data, "\n", fixed = T)) | |
| 102 | |
| 103 # skip first few lines, is this needed? | |
| 104 for (i in 3:length(out.data)) { | |
| 105 temps = unlist(strsplit(out.data[i], "\t", fixed = T)) | |
| 106 if (length(temps) == 5) { | |
| 107 # make 5 be 6 | |
| 108 temps = c(temps, NA) | |
| 109 } | |
| 110 if (length(temps) == 6) { | |
| 111 # keep only 6 | |
| 112 table = rbind(table, temps) | |
| 113 } | |
| 114 } | |
| 115 break | |
| 116 } | |
| 117 | |
| 118 } #end while loop | |
| 119 } | |
| 120 | |
| 121 index.categories = c() | |
| 122 categories = as.character(unlist(categories)) | |
| 123 | |
| 124 if(ncol(table) == 6){ | |
| 125 | |
| 126 for(i in categories){ | |
| 127 tmp.index = grep(TRUE, i == as.character(table[,5])) | |
| 128 | |
| 129 if(length(tmp.index) > 0){ | |
| 130 index.categories = c(index.categories,tmp.index) | |
| 131 } | |
| 132 } | |
| 133 | |
| 134 table = as.data.frame(table, stringsAsFactors=FALSE) | |
| 135 table = table[index.categories,c(4,6)] | |
| 136 table = table[!is.na(table[,2]),] | |
| 137 table = table[!(table[,2] == "NA"),] | |
| 138 table = table[!(table[,1] == "NA"),] | |
| 139 | |
| 140 if(args$byid){ | |
| 141 if(!is.null(args$number)){ | |
| 142 #retrieve top X mesh.ids | |
| 143 table.mesh = as.data.frame(table(table[,2])) | |
| 144 colnames(table.mesh)[1] = "mesh.id" | |
| 145 table = table[order(table.mesh$Freq, decreasing = TRUE),] | |
| 146 table = table[1:min(args$number, nrow(table.mesh)),] | |
| 147 table.mesh$mesh.id = as.character(table.mesh$mesh.id) | |
| 148 #subset table for top X mesh.ids | |
| 149 table = table[which(as.character(table$V6) %in% as.character(table.mesh$mesh.id)),] | |
| 150 table = table[!duplicated(table[,2]),] | |
| 151 }else{ | |
| 152 table = table[!duplicated(table[,2]),] | |
| 153 } | |
| 154 } else { | |
| 155 if(!is.null(args$number)){ | |
| 156 table[,1] = tolower(as.character(table[,1])) | |
| 157 table = as.data.frame(table(table[,1])) | |
| 158 colnames(table)[1] = "term" | |
| 159 table = table[order(table$Freq, decreasing = TRUE),] | |
| 160 table = table[1:min(args$number, nrow(table)),] | |
| 161 table$term = as.character(table$term) | |
| 162 | |
| 163 }else{ | |
| 164 table[,1] = tolower(as.character(table[,1])) | |
| 165 table = table[!duplicated(table[,1]),] | |
| 166 } | |
| 167 } | |
| 168 | |
| 169 return(table) | |
| 170 | |
| 171 } else { | |
| 172 return(NULL) | |
| 173 } | |
| 174 } | |
| 175 | |
| 176 | |
| 177 #for all PMIDs of a row get PubTator terms and add them to the matrix | |
| 178 for (i in 1:nrow(data)){ | |
| 179 | |
| 180 pmids = as.character(data[i,pmid_cols_index]) | |
| 181 pmids = pmids[!pmids == "NA"] | |
| 182 | |
| 183 | |
| 184 if ( (pmids_count > 10000)){ | |
| 185 cat("Break (10s) to avoid killing of requests. Please wait.",'\n') | |
| 186 Sys.sleep(10) | |
| 187 pmids_count = 0 | |
| 188 } | |
| 189 | |
| 190 pmids_count = pmids_count + length(pmids) | |
| 191 | |
| 192 #get puptator terms with get_pubtator_terms function | |
| 193 if (length(pmids) >0){ | |
| 194 table = get_pubtator_terms(pmids, args$categories) | |
| 195 | |
| 196 if(!is.null(table)){ | |
| 197 | |
| 198 colnames(table)= c("term","mesh.id") | |
| 199 | |
| 200 # add data in binary matrix | |
| 201 if (args$byid){ | |
| 202 mesh.ids = as.character(table$mesh.id) | |
| 203 if (length(mesh.ids) > 0 ){ | |
| 204 word_matrix[i,mesh.ids] <- 1 | |
| 205 cat(length(mesh.ids), " IDs for PMIDs of row", i," were added",'\n') | |
| 206 # add data in dictionary | |
| 207 dict.table = rbind(dict.table, table) | |
| 208 dict.table = dict.table[!duplicated(as.character(dict.table[,2])),] | |
| 209 } | |
| 210 } else { | |
| 211 terms = as.character(table[,1]) | |
| 212 if (length(terms) > 0 ){ | |
| 213 word_matrix[i,terms] <- 1 | |
| 214 cat(length(terms), " terms for PMIDs of row", i," were added.",'\n') | |
| 215 } | |
| 216 } | |
| 217 } | |
| 218 | |
| 219 } else { | |
| 220 cat("No terms for PMIDs of row", i," were found.",'\n') | |
| 221 } | |
| 222 } | |
| 223 | |
| 224 if (args$byid){ | |
| 225 #change column names of matrix: exchange mesh ids/ids with term | |
| 226 index_names = match(names(word_matrix), as.character(dict.table[[2]])) | |
| 227 names(word_matrix) = dict.table[index_names,1] | |
| 228 } | |
| 229 | |
| 230 colnames(word_matrix) = gsub("[^[:print:]]","",colnames(word_matrix)) | |
| 231 colnames(word_matrix) = gsub('\"', "", colnames(word_matrix), fixed = TRUE) | |
| 232 | |
| 233 #merge duplicated columns | |
| 234 word_matrix = as.data.frame(do.call(cbind, by(t(word_matrix),INDICES=names(word_matrix),FUN=colSums))) | |
| 235 | |
| 236 #save binary matrix | |
| 237 word_matrix <- as.matrix(word_matrix) | |
| 238 word_matrix[is.na(word_matrix)] <- 0 | |
| 239 cat("Matrix with ",nrow(word_matrix)," rows and ",ncol(word_matrix)," columns generated.","\n") | |
| 240 #write.table(word_matrix, args$output) | |
| 241 write.table(word_matrix, args$output, row.names = FALSE, sep = '\t') | |
| 242 | |
| 243 | |
| 244 | |
| 245 | |
| 246 | |
| 247 |
