Mercurial > repos > ebi-gxa > decoupler_pathway_inference
view decoupler_pathway_inference.xml @ 7:2c5686d627c0 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 1efa285536ea940b459fd07f452a6eeb0cf0ffb9
author | ebi-gxa |
---|---|
date | Sun, 27 Oct 2024 20:39:33 +0000 |
parents | 77d680b36e23 |
children | 9864fd2cc1f0 |
line wrap: on
line source
<tool id="decoupler_pathway_inference" name="Decoupler Pathway Inference" version="1.4.0+galaxy0" profile="20.05" license="MIT"> <description> of functional genesets/pathways for scRNA-seq data. </description> <requirements> <requirement type="package" version="1.4.0">decoupler</requirement> </requirements> <command> python '$__tool_directory__/decoupler_pathway_inference.py' -i '$input_anndata' -n '$input_network_file' --min_n "$min_n" --method '$method' $use_raw --source $source --target $target --weight $weight --output "inference" $write_activities_path </command> <inputs> <param name="input_anndata" type="data" format="h5ad" label="Input AnnData file" /> <param name="input_network_file" type="data" format="tabular" label="Input Network file" help="Tabular file with columns Source, Target and Weight. A source gene/pathway regulates/contains a target gene, weights can be either positive or negative. The source element needs to be part of the network, the target is a gene in the network and in the dataset" /> <param name="min_n" type="integer" min="0" value="5" label="Minimum targets per source." help="If targets are less than minimum, sources are removed" /> <param name="method" type="select" label="Activity inference method"> <option value="mlm" selected="true">Multivariate linear model (MLM)</option> <option value="ulm">Univariate linear model (ULM)</option> </param> <param name="use_raw" type="boolean" truevalue="--use_raw" falsevalue="" checked="false" label="Use the raw part of the AnnData object" /> <param name="write_activities_path" type="boolean" truevalue="--activities_path anndata_activities_path.h5ad" falsevalue="" checked="true" label="Write the activities AnnData object (contains the MLM/ULM activity results for each pathway and each cell in the main matrix, it is not a replacement of the original AnnData provided as input)." /> <param name="source" type="text" value='source' label="Column name in network with source nodes." help="If empty then default is 'source' is used." /> <param name="target" type="text" value='target' label="Column name in network with target nodes." help="If empty then default is 'target' is used." /> <param name="weight" type="text" value='weight' label="Column name in network with weight." help="If empty then default is 'weight' is used." /> </inputs> <outputs> <data name="output_ad" format="h5ad" from_work_dir="anndata_activities_path.h5ad" label="${tool.name} on ${on_string}: Regulators/Pathways activity AnnData file"> <filter>write_activities_path</filter> </data> <data name="output_table" format="tabular" from_work_dir="inference.tsv" label="${tool.name} on ${on_string}: Output estimate table" /> </outputs> <tests> <!-- Hint: You can use [ctrl+alt+t] after defining the inputs/outputs to auto-scaffold some basic test cases. --> <test expect_num_outputs="2"> <param name="input_anndata" value="pbmc3k_processed.h5ad"/> <param name="input_network_file" value="progeny_test.tsv"/> <param name="min_n" value="0"/> <param name="method" value="mlm"/> <param name="use_raw" value="false"/> <param name="write_activities_path" value="true"/> <param name="source" value="source"/> <param name="target" value="target"/> <param name="weight" value="weight"/> <output name="output_ad"> <assert_contents> <has_h5_keys keys="obsm/mlm_estimate"/> </assert_contents> </output> <output name="output_table"> <assert_contents> <has_n_columns n="5"/> </assert_contents> </output> </test> <test> <param name="input_anndata" value="pbmc3k_processed.h5ad"/> <param name="input_network_file" value="progeny_test_2.tsv"/> <param name="min_n" value="0"/> <param name="method" value="ulm"/> <param name="use_raw" value="false"/> <param name="write_activities_path" value="true"/> <param name="source" value="source"/> <param name="target" value="target"/> <param name="weight" value="weight"/> <output name="output_ad"> <assert_contents> <has_h5_keys keys="obsm/ulm_estimate"/> </assert_contents> </output> <output name="output_table"> <assert_contents> <has_n_columns n="5"/> </assert_contents> </output> </test> </tests> <help> **What it does** Usage ..... **Description** This tool extracts pathway activity inference using decoupler. **Input** The input file should be an AnnData object in H5AD format. The tool accepts an H5AD file containing raw or normalized data. The tool also takes network file containing a collection of pathways and their target genes, with weights for each interaction. Example: ``` source target weight 0 T1 G01 1.0 1 T1 G02 1.0 2 T1 G03 0.7 3 T2 G04 1.0 4 T2 G06 -0.5 ``` You can also specify whether to use the raw data in the AnnData object instead of the X matrix using the "use_raw" parameter and Minimum of targets per source using "min_n". **Output** The tool outputs an AnnData object containing the scores in the "obs" field, and tab-separated text files containing the scores for each cell. If the "write_activities_path" parameter is set to "true", the tool will write the modified AnnData object to an H5AD file. If the "write_inference" parameter is set to "true", the tool will output a tab-separated text file containing the scores for each cell. </help> <citations> <citation type="doi">10.1093/bioadv/vbac016 </citation> </citations> </tool>