Mercurial > repos > ebi-gxa > decoupler_pathway_inference
view decoupler_aucell_score.py @ 9:81ccee273bc6 draft default tip
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 05690508f6fc11cfc14213efedfd2bca5bb6040e
author | ebi-gxa |
---|---|
date | Wed, 30 Oct 2024 14:26:33 +0000 |
parents | c6787c2aee46 |
children |
line wrap: on
line source
import argparse import anndata import decoupler as dc import numba as nb import pandas as pd def read_gmt_long(gmt_file): r""" Reads a GMT file and produce a Pandas DataFrame in long format, ready to be passed to the AUCell method. Parameters ---------- gmt_file : str Path to the GMT file. Returns ------- pd.DataFrame A DataFrame with the gene sets. Each row represents a gene set to gene assignment, and the columns are "gene_set_name" and "genes". >>> import os >>> import tempfile >>> line = "HALLMARK_NOTCH_SIGNALING\ ... \thttp://www.gsea-msigdb.org/\ ... gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\ ... \tJAG1\tNOTCH3\tNOTCH2\tAPH1A\tHES1\tCCND1\ ... \tFZD1\tPSEN2\tFZD7\tDTX1\tDLL1\tFZD5\tMAML2\ ... \tNOTCH1\tPSENEN\tWNT5A\tCUL1\tWNT2\tDTX4\ ... \tSAP30\tPPARD\tKAT2A\tHEYL\tSKP1\tRBX1\tTCF7L2\ ... \tARRB1\tLFNG\tPRKCA\tDTX2\tST3GAL6\tFBXW11\n" >>> line2 = "HALLMARK_APICAL_SURFACE\ ... \thttp://www.gsea-msigdb.org/\ ... gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\ ... \tB4GALT1\tRHCG\tMAL\tLYPD3\tPKHD1\tATP6V0A4\ ... \tCRYBG1\tSHROOM2\tSRPX\tMDGA1\tTMEM8B\tTHY1\ ... \tPCSK9\tEPHB4\tDCBLD2\tGHRL\tLYN\tGAS1\tFLOT2\ ... \tPLAUR\tAKAP7\tATP8B1\tEFNA5\tSLC34A3\tAPP\ ... \tGSTM3\tHSPB1\tSLC2A4\tIL2RB\tRTN4RL1\tNCOA6\ ... \tSULF2\tADAM10\tBRCA1\tGATA3\tAFAP1L2\tIL2RG\ ... \tCD160\tADIPOR2\tSLC22A12\tNTNG1\tSCUBE1\tCX3CL1\ ... \tCROCC\n" >>> temp_dir = tempfile.gettempdir() >>> temp_gmt = os.path.join(temp_dir, "temp_file.gmt") >>> with open(temp_gmt, "w") as f: ... f.write(line) ... f.write(line2) 288 380 >>> df = read_gmt_long(temp_gmt) >>> df.shape[0] 76 >>> len(df.loc[df["gene_set"] == "HALLMARK_APICAL_SURFACE"].gene.tolist()) 44 """ # Create a list of dictionaries, where each dictionary represents a # gene set gene_sets = {} # Read the GMT file into a list of lines with open(gmt_file, "r") as f: while True: line = f.readline() if not line: break fields = line.strip().split("\t") gene_sets[fields[0]] = fields[2:] return pd.concat( pd.DataFrame({"gene_set": k, "gene": v}) for k, v in gene_sets.items() ) def score_genes_aucell_mt( adata: anndata.AnnData, gene_set_gene: pd.DataFrame, use_raw=False, min_n_genes=5, var_gene_symbols_field=None, ): """Score genes using Aucell. Parameters ---------- adata : anndata.AnnData gene_set_gene: pd.DataFrame with columns gene_set and gene use_raw : bool, optional, False by default. min_n_genes : int, optional, 5 by default. var_gene_symbols_field : str, optional, None by default. The field in var where gene symbols are stored >>> import scanpy as sc >>> import decoupler as dc >>> adata = sc.datasets.pbmc68k_reduced() >>> r_gene_list = adata.var[ ... adata.var.index.str.startswith("RP")].index.tolist() >>> m_gene_list = adata.var[ ... adata.var.index.str.startswith("M")].index.tolist() >>> gene_set = {} >>> gene_set["m"] = m_gene_list >>> gene_set["r"] = r_gene_list >>> gene_set_df = pd.concat( ... pd.DataFrame( ... {'gene_set':k, 'gene':v} ... ) for k, v in gene_set.items()) >>> score_genes_aucell_mt(adata, gene_set_df, use_raw=False) >>> "AUCell_m" in adata.obs.columns True >>> "AUCell_r" in adata.obs.columns True """ # if var_gene_symbols_fiels is provided, transform gene_set_gene df so # that gene contains gene ids instead of gene symbols if var_gene_symbols_field: # merge the index of var to gene_set_gene df based on # var_gene_symbols_field var_id_symbols = adata.var[[var_gene_symbols_field]] var_id_symbols["gene_id"] = var_id_symbols.index gene_set_gene = gene_set_gene.merge( var_id_symbols, left_on="gene", right_on=var_gene_symbols_field, how="left", ) # this will still produce some empty gene_ids (genes in the # gene_set_gene df that are not in the var df), fill those # with the original gene symbol from the gene_set to avoid # deforming the AUCell calculation gene_set_gene["gene_id"] = gene_set_gene["gene_id"].fillna( gene_set_gene["gene"] ) gene_set_gene["gene"] = gene_set_gene["gene_id"] # run decoupler's run_aucell dc.run_aucell( adata, net=gene_set_gene, source="gene_set", target="gene", use_raw=use_raw, min_n=min_n_genes, ) for gs in gene_set_gene.gene_set.unique(): if gs in adata.obsm["aucell_estimate"].keys(): adata.obs[f"AUCell_{gs}"] = adata.obsm["aucell_estimate"][gs] def run_for_genelists( adata, gene_lists, score_names, use_raw=False, gene_symbols_field=None, min_n_genes=5, ): if len(gene_lists) == len(score_names): for gene_list, score_names in zip(gene_lists, score_names): genes = gene_list.split(",") gene_sets = {} gene_sets[score_names] = genes gene_set_gene_df = pd.concat( pd.DataFrame({"gene_set": k, "gene": v}) for k, v in gene_sets.items() ) score_genes_aucell_mt( adata, gene_set_gene_df, use_raw, min_n_genes, var_gene_symbols_field=gene_symbols_field, ) else: raise ValueError( "The number of gene lists (separated by :) and score names \ (separated by :) must be the same" ) if __name__ == "__main__": # Create command-line arguments parser parser = argparse.ArgumentParser(description="Score genes using Aucell") parser.add_argument( "--input_file", type=str, help="Path to input AnnData file", required=True, ) parser.add_argument( "--output_file", type=str, help="Path to output file", required=True ) parser.add_argument( "--gmt_file", type=str, help="Path to GMT file", required=False ) # add argument for gene sets to score parser.add_argument( "--gene_sets_to_score", type=str, required=False, help="Optional comma separated list of gene sets to score \ (the need to be in the gmt file)", ) # add argument for gene list (comma separated) to score parser.add_argument( "--gene_lists_to_score", type=str, required=False, help="Comma separated list of genes to score. You can have more \ than one set of genes, separated by colon :", ) # argument for the score name when using the gene list parser.add_argument( "--score_names", type=str, required=False, help="Name of the score column when using the gene list. You can \ have more than one set of score names, separated by colon :. \ It should be the same length as the number of gene lists.", ) parser.add_argument( "--gene_symbols_field", type=str, help="Name of the gene symbols field in the AnnData object", required=True, ) # argument for min_n Minimum of targets per source. If less, sources # are removed. parser.add_argument( "--min_n", type=int, required=False, default=5, help="Minimum of targets per source. If less, sources are removed.", ) parser.add_argument("--use_raw", action="store_true", help="Use raw data") parser.add_argument( "--write_anndata", action="store_true", help="Write the modified AnnData object", ) # argument for number of max concurrent processes parser.add_argument( "--max_threads", type=int, required=False, default=1, help="Number of max concurrent threads", ) # Parse command-line arguments args = parser.parse_args() nb.set_num_threads(n=args.max_threads) # Load input AnnData object adata = anndata.read_h5ad(args.input_file) if args.gmt_file is not None: # Load MSigDB file in GMT format # msigdb = read_gmt(args.gmt_file) msigdb = read_gmt_long(args.gmt_file) gene_sets_to_score = ( args.gene_sets_to_score.split(",") if args.gene_sets_to_score else [] ) if gene_sets_to_score: # we limit the GMT file read to the genesets specified in the # gene_sets_to_score argument msigdb = msigdb[msigdb["gene_set"].isin(gene_sets_to_score)] score_genes_aucell_mt( adata, msigdb, args.use_raw, args.min_n, var_gene_symbols_field=args.gene_symbols_field, ) elif args.gene_lists_to_score is not None and args.score_names is not None: gene_lists = args.gene_lists_to_score.split(":") score_names = args.score_names.split(",") run_for_genelists( adata, gene_lists, score_names, args.use_raw, args.gene_symbols_field, args.min_n, ) # Save the modified AnnData object or generate a file with cells as rows # and the new score_names columns if args.write_anndata: adata.write_h5ad(args.output_file) else: new_columns = [ col for col in adata.obs.columns if col.startswith("AUCell_") ] adata.obs[new_columns].to_csv(args.output_file, sep="\t", index=True)