changeset 0:484930fdc002 draft

planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/ocean commit e395cfee9cab90bbed58ac52fb8467c896f51824
author ecology
date Thu, 01 Aug 2024 09:46:44 +0000
parents
children 77787acbd793
files argo_getdata.py divandfull.jl divandfull.xml macro.xml test-data/argo_data.netcdf test-data/data_from_Eutrophication_Med_profiles_2022_unrestricted.nc
diffstat 6 files changed, 566 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/argo_getdata.py	Thu Aug 01 09:46:44 2024 +0000
@@ -0,0 +1,191 @@
+# author: Marie Jossé
+
+# Python script
+
+#############################
+#      Argo data access     #
+#############################
+
+# Packages : argopy
+
+
+# Load arguments
+import argparse
+import sys
+
+import argopy
+
+command_line_args = sys.argv[1:]
+
+
+parser = argparse.ArgumentParser(description="Retrieve argo Data")
+# Add arguments
+
+parser.add_argument("--user", type=str,
+                    help="User mode : standard, expert or research")
+parser.add_argument("--cardinal_1", type=float, help="Longitude min")
+parser.add_argument("--cardinal_2", type=float, help="Longitude max")
+parser.add_argument("--cardinal_3", type=float, help="Latitude min")
+parser.add_argument("--cardinal_4", type=float, help="Latitude max")
+parser.add_argument("--pressure_1", type=float, help="Pressure min")
+parser.add_argument("--pressure_2", type=float, help="Pressure max")
+parser.add_argument("--date_1", type=str, help="Starting date")
+parser.add_argument("--date_2", type=str, help="Ending date.")
+parser.add_argument("--wmo", type=str, help="WMO: argo's identifier")
+parser.add_argument("--profile", type=str, help="Number of profiles")
+parser.add_argument("--params", type=str, help="List of bgc parameters")
+parser.add_argument("--measured", type=str, help="List of bgc parameters")
+parser.add_argument("--output_argo", type=str, help="Output data from argo")
+
+args = parser.parse_args(command_line_args)
+
+
+# Parse the command line arguments
+
+print(args)
+# Import data
+
+user = args.user
+cardinal_1 = args.cardinal_1
+cardinal_2 = args.cardinal_2
+cardinal_3 = args.cardinal_3
+cardinal_4 = args.cardinal_4
+pressure_1 = args.pressure_1
+pressure_2 = args.pressure_2
+date_1 = args.date_1
+date_2 = args.date_2
+wmo = args.wmo
+if wmo is not None:
+    wmo = list(map(int, wmo.split(",")))
+profile = args.profile
+if profile is not None:
+    profile = list(map(int, profile.split(",")))
+params = args.params
+if params is not None:
+    params = params.split(",")
+    if len(params) == 83:
+        params = "all"
+measured = args.measured
+if measured is not None:
+    measured = measured.split(",")
+
+# Let’s import the argopy data fetcher:
+
+######################
+#       User mode    #
+######################
+# By default,
+# all argopy data fetchers are set to work with a standard user mode.
+# To change that
+
+argopy.set_options(mode=user)
+
+######################
+# Fetching Argo data #
+######################
+# Data selection #
+
+# To access Argo data with a DataFetcher,
+# you need to define how to select your data of interest.
+# argopy provides 3 different data selection methods:
+
+argo_data = argopy.DataFetcher()
+
+# 🗺 For a space/time domain #
+
+if (cardinal_1 is not None):
+    mode = "region"
+    argo_data = argo_data.region([cardinal_1, cardinal_2,
+                                  cardinal_3, cardinal_4,
+                                  pressure_1, pressure_2,
+                                  date_1, date_2])
+
+# ⚓ For one or more profiles #
+# Use the fetcher access point argopy.DataFetcher.profile()
+# to specify the float WMO platform number
+# and the profile cycle number(s) to retrieve profiles for.
+elif (wmo is not None and profile is not None):
+    argo_data = argo_data.profile(wmo, profile)
+    # can also be argo_data = argo_data.profile(6902755, [3, 12])
+    mode = "profile"
+
+# 🤖 For one or more floats #
+# If you know the Argo float unique identifier number called a WMO number
+# you can use the fetcher access point DataFetcher.float()
+# to specify one or more float WMO platform numbers to select.
+else:
+    argo_data = argo_data.float(wmo)
+    # can also be argo_data = argo_data.float([6902746, 6902755])
+    mode = "float"
+
+# Data sources #
+# Let’s start with standard import:
+# argopy.reset_options()
+# Specify data source erddap, gdac or argovis
+
+# if (ftp != "") :
+    # argopy.set_options(src = "gdac", ftp = ftp)
+# else :
+    # argopy.set_options(src = "erddap")
+
+# With remote, online data sources,
+# it may happens that the data server is experiencing down time.
+print(argopy.status())
+
+# Dataset #
+# Argo data are distributed as a single dataset.
+# It is referenced at https://doi.org/10.17882/42182.
+# But they are several Argo missions with specific files and parameters
+# that need special handling by argopy, namely:
+#   - the core Argo Mission: from floats that measure temperature,
+#     salinity, pressure down to 2000m,
+#   - the Deep Argo Mission: from floats that measure temperature,
+#     salinity, pressure down to 6000m,
+#   - and the BGC-Argo Mission: from floats that measure temperature,
+#     salinity, pressure and oxygen, pH, nitrate, chlorophyll,
+#     backscatter, irradiance down to 2000m.
+# You can choose between phy or bgc
+if (params is None):
+    argopy.set_options(dataset="phy")
+else:
+    argopy.set_options(dataset="bgc")
+    if (measured != ['None'] and measured is not None):
+        argo_data = argopy.DataFetcher(params=params, measured=measured)
+        if (mode == "region"):
+            argo_data = argo_data.region([cardinal_1, cardinal_2,
+                                          cardinal_3, cardinal_4,
+                                          pressure_1, pressure_2,
+                                          date_1, date_2])
+        elif (mode == "profile"):
+            argo_data = argo_data.profile(wmo, profile)
+        else:
+            argo_data = argo_data.float(wmo)
+    else:
+        argo_data = argopy.DataFetcher(params=params, measured=None)
+        if (mode == "region"):
+            argo_data = argo_data.region([cardinal_1, cardinal_2,
+                                          cardinal_3, cardinal_4,
+                                          pressure_1, pressure_2,
+                                          date_1, date_2])
+        elif (mode == "profile"):
+            argo_data = argo_data.profile(wmo, profile)
+        else:
+            argo_data = argo_data.float(wmo)
+
+# Data fetching #
+# To fetch (i.e. access, download, format) Argo data,
+# argopy provides the DataFetcher class.
+# Several DataFetcher arguments exist to help you select the dataset,
+# the data source and the user mode the most suited for your applications;
+# and also to improve performances.
+
+# You define the selection of data you want to fetch
+# with one of the DataFetcher methods: region, float or profile.
+# 2 lines to download Argo data: import and fetch !
+
+argo_data = argo_data.load().data
+argo_data.to_netcdf("argo_data.nc")
+
+# argo_metadata = argo_data.to_index()
+
+print(argo_data)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/divandfull.jl	Thu Aug 01 09:46:44 2024 +0000
@@ -0,0 +1,211 @@
+#Julia script
+
+###############################
+##    DIVAndrun analsysis    ##
+###############################
+import Pkg; 
+using Pkg
+Pkg.status()
+
+### Import packages
+using DIVAnd
+using Dates
+using Printf
+# Getting the arguments from the command line
+args = ARGS
+
+# Import data
+if length(args) < 4
+    error("This tool needs at least 4 arguments")
+else
+    netcdf_data = args[1]
+    longmin = parse(Float64, args[2])
+    longmax = parse(Float64, args[3])
+    latmin = parse(Float64, args[4])
+    latmax = parse(Float64, args[5])
+    startdate = args[6] # yyyy,mm,dd
+    enddate = args[7]
+    varname = args[8]
+    selmin = parse(Float64, args[9])
+    selmax = parse(Float64, args[10])
+    bathname = args[11]
+end
+
+## This script will create a climatology:
+# 1. ODV data reading.
+# 2. Extraction of bathymetry and creation of mask
+# 3. Data download from other sources and duplicate removal.
+# 4. Quality control.
+# 5. Parameter optimisation.
+# 6. Spatio-temporal interpolation with DIVAnd.
+
+
+### Configuration
+# Define the horizontal, vertical (depth levels) and temporal resolutions.
+# Select the variable of interest
+
+dx, dy = 0.125, 0.125
+lonr = longmin:dx:longmax
+latr = latmin:dy:latmax
+
+# Convert string in date
+startdate = Date(startdate, "yyyy-mm-dd")
+
+# extract year month day
+startyear = year(startdate)
+startmonth = month(startdate)
+startday = day(startdate)
+
+# Convert string in date
+enddate = Date(enddate, "yyyy-mm-dd")
+
+# extract year month day
+endyear = year(enddate)
+endmonth = month(enddate)
+endday = day(enddate)
+
+timerange = [Date(startyear, startmonth, startday),Date(endyear, endmonth, endday)];
+
+depthr = [0.,5., 10., 15., 20., 25., 30., 40., 50., 66, 
+    75, 85, 100, 112, 125, 135, 150, 175, 200, 225, 250, 
+    275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 
+    800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 
+    1300, 1350, 1400, 1450, 1500, 1600, 1750, 1850, 2000];
+depthr = [0.,10.,20.];
+
+varname = varname
+yearlist = [1900:2023];
+monthlist = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]];
+
+# We create here the variable TS (for "tDataset(netcdf_data,"r")ime selector"), which allows us to work with the observations corresponding to each period of interest.
+
+TS = DIVAnd.TimeSelectorYearListMonthList(yearlist,monthlist);
+@show TS;
+
+figdir = "outputs/"
+if ~(isdir(figdir))
+    mkdir(figdir)
+else
+    @info("Figure directory already exists")
+end
+### 1. Read your ODV file
+# Adapt the datadir and datafile values.
+# The example is based on a sub-setting of the Mediterranean Sea aggregated dataset.
+# The dataset has been extracted around the Adriatic Sea and exported to a netCDF using Ocean Data 
+datadir = "../data"
+
+datafile = netcdf_data
+
+# Then you can read the full file:
+@time obsval,obslon,obslat,obsdepth,obstime,obsid = NCODV.load(Float64, datafile, 
+    "Water body $(varname)");
+
+# Check the extremal values of the observations
+checkobs((obslon,obslat,obsdepth,obstime),obsval,obsid)
+
+### 2. Extract the bathymetry
+
+# It is used to delimit the domain where the interpolation is performed.
+## 2.1 Choice of bathymetry
+
+# Modify bathname according to the resolution required.
+
+@time bx,by,b = load_bath(bathname,true,lonr,latr);
+
+## 2.2 Create mask
+# False for sea
+# True for land
+
+mask = falses(size(b,1),size(b,2),length(depthr))
+for k = 1:length(depthr)
+    for j = 1:size(b,2)
+        for i = 1:size(b,1)
+            mask[i,j,k] = b[i,j] >= depthr[k]
+        end
+    end
+end
+@show size(mask)
+
+### 3. Quality control
+# We check the salinity value.
+# Adapt the criteria to your region and variable.
+
+sel = (obsval .<= selmax) .& (obsval .>= selmin);
+
+obsval = obsval[sel]
+obslon = obslon[sel]
+obslat = obslat[sel]
+obsdepth = obsdepth[sel]
+obstime = obstime[sel]
+obsid = obsid[sel];
+
+### 4. Analysis parameters
+# Correlation lengths and noise-to-signal ratio
+
+# We will use the function diva3D for the calculations.
+# With this function, the correlation length has to be defined in meters, not in degrees.
+
+sz = (length(lonr),length(latr),length(depthr));
+lenx = fill(100_000.,sz)   # 100 km
+leny = fill(100_000.,sz)   # 100 km
+lenz = fill(25.,sz);      # 25 m 
+len = (lenx, leny, lenz);
+epsilon2 = 0.1;
+
+### Output file name
+outputdir = "outputs_netcdf/"
+if !isdir(outputdir)
+    mkpath(outputdir)
+end
+filename = joinpath(outputdir, "Water_body_$(replace(varname," "=>"_")).nc")
+
+### 7. Analysis
+# Remove the result file before running the analysis, otherwise you'll get the message
+if isfile(filename)
+    rm(filename) # delete the previous analysis
+    @info "Removing file $filename"
+end
+
+## 7.1 Plotting function
+# Define a plotting function that will be applied for each time index and depth level.
+# All the figures will be saved in a selected directory.
+     
+function plotres(timeindex,sel,fit,erri)
+    tmp = copy(fit)
+    nx,ny,nz = size(tmp)
+    for i in 1:nz
+        figure("Additional-Data")
+        ax = subplot(1,1,1)
+        ax.tick_params("both",labelsize=6)
+        ylim(39.0, 46.0);
+        xlim(11.5, 20.0);
+        title("Depth: (timeindex)", fontsize=6)
+        pcolor(lonr.-dx/2.,latr.-dy/2, permutedims(tmp[:,:,i], [2,1]);
+               vmin = 33, vmax = 40)
+        colorbar(extend="both", orientation="vertical", shrink=0.8).ax.tick_params(labelsize=8)
+
+        contourf(bx,by,permutedims(b,[2,1]), levels = [-1e5,0],colors = [[.5,.5,.5]])
+        aspectratio = 1/cos(mean(latr) * pi/180)
+        gca().set_aspect(aspectratio)
+        
+        figname = varname * @sprintf("_%02d",i) * @sprintf("_%03d.png",timeindex)
+        plt.savefig(joinpath(figdir, figname), dpi=600, bbox_inches="tight");
+        plt.close_figs()
+    end
+end
+
+## 7.2 Create the gridded fields using diva3d
+# Here only the noise-to-signal ratio is estimated.
+# Set fitcorrlen to true to also optimise the correlation length.
+@time dbinfo = DIVAnd.diva3d((lonr,latr,depthr,TS),
+    (obslon,obslat,obsdepth,obstime), obsval,
+    len, epsilon2,
+    filename,varname,
+    bathname=bathname,
+    fitcorrlen = false,
+    niter_e = 2,
+    surfextend = true
+    );
+
+# Save the observation metadata in the NetCDF file.
+DIVAnd.saveobs(filename,(obslon,obslat,obsdepth,obstime),obsid);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/divandfull.xml	Thu Aug 01 09:46:44 2024 +0000
@@ -0,0 +1,140 @@
+<tool id="divand_full_analysis" name="DIVAnd" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.01" license="MIT">
+    <description>Data-Interpolating Variational Analysis in n dimensions</description>
+    <macros>
+        <token name="@TOOL_VERSION@">0.1.0</token>
+        <token name="@VERSION_SUFFIX@">0</token>
+    </macros>
+    <requirements>
+        <requirement type="package" version="1.8.5">julia</requirement>
+        <requirement type="package" version="2.7.9">julia-divand</requirement>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+    ## The HOME .julia folder is not writable inside the Docker container, so we need to set one that is writable. 
+    export JULIA_DEPOT_PATH="\$PWD:\$JULIA_DEPOT_PATH" &&
+    julia
+        '$__tool_directory__/divandfull.jl'
+        '$input_netcdf_identifier'
+        '$longmin'
+        '$longmax'
+        '$latmin'
+        '$latmax'
+        '$startdate'
+        '$enddate'
+        '$varname'
+        '$selmin'
+        '$selmax'
+        '$bathname'
+    ]]></command>
+    <inputs>
+        <param name="input_netcdf_identifier" type="data" format="netcdf" label="Input your netcdf data"/>
+        <param name="bathname" type="data" format="netcdf" label="Input your bathymetry netcdf file" help="for more info see below."/>
+        <param name="longmin" type="float" min="-180" max="180" value="0" label="Longitude minimal"/>
+        <param name="longmax" type="float" min="-180" max="180" value="0" label="Longitude maximal"/>
+        <param name="latmin" type="float" min="-180" max="180" value="0" label="Latitude minimal"/>
+        <param name="latmax" type="float" min="-180" max="180" value="0" label="Latitude maximal"/>
+        <param name="startdate" type="text" value="yyyy-mm-dd" label="Input the starting date">
+            <sanitizer invalid_char="">
+                <valid initial="string.digits">
+                    <add value="-"/>
+                </valid>
+            </sanitizer>
+        </param>
+        <param name="enddate" type="text" value="yyyy-mm-dd" label="Input the ending date">
+            <sanitizer invalid_char="">
+                <valid initial="string.digits">
+                    <add value="-"/>
+                </valid>
+            </sanitizer>
+        </param>
+        <param name="varname" type="text" value="variable" label="Write the name of the variable of the analysis" help="Example: phosphate">
+            <sanitizer invalid_char="">
+                <valid initial="string.letters">
+                    <add value="_"/>
+                </valid>
+            </sanitizer>
+            <validator type="regex">[0-9a-zA-Z_]+</validator>
+        </param>
+        <param name="selmin" type="integer" min="0" max="100" optional="true" value="0" label="Minimum of the salinity"/>
+        <param name="selmax" type="integer" min="0" max="100" optional="true" value="0" label="Maximum of the salinity"/>
+    </inputs>
+    <outputs>
+        <data name="output_netcdf" label="DIVAnd netcdf output" from_work_dir="outputs_netcdf/*.nc" format="netcdf"/>
+    </outputs>
+    <tests>
+        <test expect_num_outputs="1">
+            <param name="input_netcdf_identifier" value="data_from_Eutrophication_Med_profiles_2022_unrestricted.nc"/>
+            <param name="bathname" location="https://dox.ulg.ac.be/index.php/s/U0pqyXhcQrXjEUX/download"/>
+            <param name="longmin" value="19.0"/>
+            <param name="longmax" value="30.0"/>
+            <param name="latmin" value="32.0"/>
+            <param name="latmax" value="38.0"/>
+            <param name="varname" value="phosphate"/>
+            <param name="startdate" value="1950-01-01"/>
+            <param name="enddate" value="2017-12-31"/>
+            <param name="selmin" value="0"/>
+            <param name="selmax" value="100"/>
+            <output name="output_netcdf">
+                <assert_contents>
+            	    <has_size value="68291" delta="0"/>
+            	</assert_contents>
+            </output>
+        </test>
+    </tests>
+    <help><![CDATA[
+
+.. class:: infomark
+
+**What it does**
+
+This tool takes a observation netcdf file and create climatology 
+
+**Input**
+
+- An ocean observation netcdf file
+- A bathymetry netcdf file, you can download it like this: download("https://dox.ulg.ac.be/index.php/s/U0pqyXhcQrXjEUX/download", "gebco_30sec_8.nc")
+- Some complementary information for the tool to better understand your data and create your climatology on the right area: latitudes, longitudes, dates, and salinity.$
+
+**Output**
+
+One netcdf file containing the climatology created by DIVAnd.
+
+
+**A bit of context**
+
+DIVAnd (Data-Interpolating Variational Analysis in n dimensions) performs an n-dimensional variational analysis/gridding of
+arbitrarily located observations. Observations will be interpolated/analyzed on a curvilinear grid in 1, 2, 3 or more dimensions.
+In this sense it is a generalization of the original two-dimensional DIVA version (still available `here <https://github.com/gher-uliege/DIVA>`_ but
+not further developed anymore).
+
+The method bears some similarities and equivalences with Optimal Interpolation or Krigging in that it allows to create a smooth
+and continous field from a collection of observations, observations which can be affected by errors. The analysis method is however
+different in practise, allowing to take into account topological features, physical constraints etc in a natural way.
+The method was initially developped with ocean data in mind, but it can be applied to any field where localized observations have
+to be used to produce gridded fields which are "smooth".
+
+DIVAndrun is the core analysis function in n dimensions. It does not know anything about the physical parameters or units you work with.
+Coordinates can also be very general. The only constraint is that the metrics (pm,pn,po,...) when multiplied by the corresponding length
+scales len lead to non-dimensional parameters. Furthermore the coordinates of the output grid (xi,yi,zi,...) need to have the same units
+as the observation coordinates (x,y,z,...).
+
+DIVAndfun is a version with a minimal set of parameters (the coordinates and values of observations, i.e. (x,f), the remaining parameters
+being optional) and provides an interpolation function rather than an already gridded field.
+
+diva3D is a higher-level function specifically designed for climatological analysis of data on Earth, using longitude/latitude/depth/time
+coordinates and correlations length in meters. It makes the necessary preparation of metrics, parameter optimizations etc you normally would
+program yourself before calling the analysis function DIVAndrun.
+
+DIVAnd_heatmap can be used for additive data and produces Kernel Density Estimations.
+
+DIVAndgo is only needed for very large problems when a call to DIVAndrun leads to memory or CPU time problems. This function tries to decide
+which solver (direct or iterative) to use and how to make an automatic domain decomposition. Not all options from DIVAndrun are available.
+
+If you want to try out multivariate approaches, you can look at DIVAnd_multivarEOF and DIVAnd_multivarJAC
+
+If you want more informations about the functions and parameters see also the `documentations here <https://gher-uliege.github.io/DIVAnd.jl/latest/index.html>`_.
+
+    ]]></help>
+    <citations>
+        <citation type="doi">doi:10.5194/gmd-7-225-2014</citation>
+    </citations>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/macro.xml	Thu Aug 01 09:46:44 2024 +0000
@@ -0,0 +1,24 @@
+<macros>
+    <token name="@TOOL_VERSION@">0.1.15</token>
+    <token name="@VERSION_SUFFIX@">0</token>
+    <xml name="argo_requirements">
+        <requirements>
+            <requirement type="package" version="@TOOL_VERSION@">argopy</requirement>
+            <yield/>
+        </requirements>
+    </xml>
+    <xml name="argo_input_user">
+        <inputs>
+            <param name="user" type="select" label="Which kind of user are you ?">
+                <option value="standard">🏊 standard mode simplifies the dataset, remove most of its jargon and return a priori good data</option>
+                <option value="research">🚣 research mode simplifies the dataset to its heart, preserving only data of the highest quality for research studies, including studies sensitive to small pressure and salinity bias </option>
+                <option value="expert">🏄 expert mode return all the Argo data, without any postprocessing</option>
+           </param>
+       </inputs>
+    </xml>
+    <xml name="argo_bibref">
+       <citations>
+            <citation type="doi">doi:10.21105/joss.02425</citation>
+        </citations>
+    </xml>
+</macros>
Binary file test-data/argo_data.netcdf has changed
Binary file test-data/data_from_Eutrophication_Med_profiles_2022_unrestricted.nc has changed