Mercurial > repos > ecology > ecology_homogeneity_normality
comparison graph_lcbd.r @ 1:3df8937fd6fd draft default tip
"planemo upload for repository https://github.com/Marie59/Data_explo_tools commit 60627aba07951226c8fd6bb3115be4bd118edd4e"
author | ecology |
---|---|
date | Fri, 13 Aug 2021 18:16:46 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:9f679060051a | 1:3df8937fd6fd |
---|---|
1 #Rscript | |
2 | |
3 ######################### | |
4 ## Beta diversity ## | |
5 ######################### | |
6 | |
7 #####Packages : ggplot2 | |
8 # vegan | |
9 # adespatial | |
10 # dplyr | |
11 # tibble | |
12 # tdyr | |
13 | |
14 #####Load arguments | |
15 | |
16 args <- commandArgs(trailingOnly = TRUE) | |
17 | |
18 if (length(args) < 2) { | |
19 stop("This tool needs at least 2 arguments") | |
20 }else{ | |
21 table <- args[1] | |
22 hr <- args[2] | |
23 abund <- as.numeric(args[3]) | |
24 loc <- as.numeric(args[4]) | |
25 spe <- as.numeric(args[5]) | |
26 date <- as.numeric(args[6]) | |
27 map <- as.logical(args[7]) | |
28 sepa <- as.logical(args[8]) | |
29 not <- as.logical(args[9]) | |
30 lat <- as.numeric(args[10]) | |
31 long <- as.numeric(args[11]) | |
32 var <- as.numeric(args[12]) | |
33 source(args[13]) | |
34 } | |
35 | |
36 if (hr == "false") { | |
37 hr <- FALSE | |
38 }else{ | |
39 hr <- TRUE | |
40 } | |
41 | |
42 #####Import data | |
43 data <- read.table(table, sep = "\t", dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") | |
44 colabund <- colnames(data)[abund] | |
45 colloc <- colnames(data)[loc] | |
46 if (map) { | |
47 collat <- colnames(data)[lat] | |
48 collong <- colnames(data)[long] | |
49 } | |
50 colspe <- colnames(data)[spe] | |
51 coldate <- colnames(data)[date] | |
52 data[, coldate] <- as.factor(data[, coldate]) | |
53 | |
54 data <- data[grep("^$", data[, spe], invert = TRUE), ] | |
55 | |
56 if (sepa) { | |
57 colvar <- colnames(data)[var] | |
58 } | |
59 | |
60 # Data for species | |
61 data_num <- make_table_analyse(data, colabund, colspe, colloc, coldate) | |
62 nb_spe <- length(unique(data[, spe])) | |
63 nb_col <- ncol(data_num) - nb_spe + 1 | |
64 | |
65 #Data with coordinates and environmental | |
66 if (map) { | |
67 data_xy <- data_num[, c(collat, collong)] | |
68 colnames(data_xy) <- c("latitude", "longitude") | |
69 # Data for environment | |
70 data_env <- data_num[, c(colloc, collat, collong)] | |
71 colnames(data_env) <- c("site", "latitude", "longitude") | |
72 } | |
73 | |
74 # Data with only species and their abundance | |
75 data_spe <- data_num[, nb_col:ncol(data_num)] | |
76 rownames(data_spe) <- paste0(data_num[, colloc], " - ", data_num[, coldate]) | |
77 | |
78 #####Your analysis | |
79 | |
80 # Computation beta.div {adespatial} | |
81 # Beta.div on Hellinger-transformed species data | |
82 data_beta <- adespatial::beta.div(data_spe, method = "hellinger", nperm = 9999) | |
83 | |
84 save(data_beta, file = "beta_diversity.Rdata") | |
85 cat("##############################################################################", | |
86 "\n########################### Beta Diversity Summary ###########################", | |
87 "\n##############################################################################", | |
88 "\n\n### All data ###", | |
89 "\nBeta diversity: ", data_beta$beta[[2]], | |
90 "\nSum of Squares: ", data_beta$beta[[1]], | |
91 "\n\n### Vector of Local Contributions to Beta Diversity (LCBD) for the sites each date ###", | |
92 "\n", capture.output(data_beta$LCBD), | |
93 "\n\n### Vector of P-values associated with the LCBD indices ###", | |
94 "\n", capture.output(data_beta$p.LCBD), | |
95 "\n\n### Vector of Corrected P-values for the LCBD indices, Holm correction ###", | |
96 "\n", capture.output(data_beta$p.adj), | |
97 "\n\n### Vector of Species contributions to beta diversity (SCBD) ###", | |
98 "\n", capture.output(data_beta$SCBD), file = "LCBD.txt", fill = 1, append = TRUE) | |
99 | |
100 # Which species have a SCBD larger than the mean SCBD? | |
101 scbd <- capture.output(data_beta$SCBD[data_beta$SCBD >= mean(data_beta$SCBD)]) | |
102 write(scbd, "SCBD.txt") | |
103 | |
104 ##1st fonction | |
105 beta_div_ext <- function(data_beta, data_xy, data_env) { | |
106 data_beta_ext <- data.frame(data_xy, data_env, LCBD = data_beta$LCBD * 100, p.LCBD = data_beta$p.LCBD, signif = data_beta$p.LCBD < 0.05) | |
107 | |
108 graph_beta_ext <- ggplot2::ggplot(data = data_beta_ext, ggplot2::aes(x = latitude, y = longitude, size = LCBD, col = signif)) + | |
109 ggplot2::geom_point() + | |
110 ggplot2::scale_colour_manual(values = c("#57bce0", "#ce0b0b"), labels = c("Non significant", "Significant"), name = "Significance at 0.05") + | |
111 ggplot2::xlab("Longitude") + ggplot2::ylab("Latitude") | |
112 | |
113 ggplot2::ggsave("Beta_diversity_through_space.png", graph_beta_ext) | |
114 } | |
115 | |
116 ## Boyé et al. 2017 JSR Fig R | |
117 #################################################### | |
118 | |
119 ####LCBD#### | |
120 lcbd_site <- adespatial::beta.div(data_spe, "hellinger", nperm = 999) | |
121 | |
122 compute_lcbd <- function(data_beta, data_spe, data_num) { | |
123 | |
124 ############# | |
125 mat_lcbd_site <- data.frame(data_spe, LCBD = data_beta$LCBD * 100, p.LCBD = data_beta$p.LCBD, signif = data_beta$p.LCBD < 0.05, site = data_num[, colloc], date = data_num[, coldate]) | |
126 | |
127 ## Map spatio-temp | |
128 ################## | |
129 p1 <- ggplot2::qplot(date, site, size = LCBD, col = signif, data = mat_lcbd_site) | |
130 p1 <- p1 + ggplot2::scale_colour_manual(values = c("#57bce0", "#ce0b0b"), labels = c("Non significant", "Significant"), name = "Significance at 0.05") | |
131 p1 <- p1 + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90)) + ggplot2::xlab("Date") + ggplot2::ylab("Site") | |
132 | |
133 ggplot2::ggsave("LCBD_sites_time.png", p1) | |
134 | |
135 | |
136 ## Par années | |
137 ############# | |
138 mean_time <- tapply(mat_lcbd_site$LCBD, mat_lcbd_site$date, mean) | |
139 sd_time <- tapply(mat_lcbd_site$LCBD, mat_lcbd_site$date, sd) | |
140 date <- unique(mat_lcbd_site$date) | |
141 | |
142 data <- data.frame(date, mean_time, sd_time) | |
143 | |
144 time <- ggplot2::ggplot() + ggplot2::geom_pointrange(ggplot2::aes(x = date, y = mean_time, ymin = mean_time - sd_time, ymax = mean_time + sd_time), data = data) | |
145 time <- time + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90), axis.line.y = ggplot2::element_line(size = 0.5)) + ggplot2::ylab("mean LCBD") | |
146 | |
147 ggplot2::ggsave("Mean_LCBD_through_time.png", time) | |
148 } | |
149 | |
150 ## Choose another graph | |
151 ####################### | |
152 compute_lcbd2 <- function(data_beta, data_spe, data_num) { | |
153 | |
154 ############# | |
155 mat_lcbd_site <- data.frame(data_spe, LCBD = data_beta$LCBD * 100, p.LCBD = data_beta$p.LCBD, signif = data_beta$p.LCBD < 0.05, site = data_num[, colloc], date = data_num[, coldate], variable = data_num[, colvar]) | |
156 | |
157 p1 <- ggplot2::qplot(date, variable, size = LCBD, col = signif, data = mat_lcbd_site) | |
158 p1 <- p1 + ggplot2::scale_colour_manual(values = c("#57bce0", "#ce0b0b"), labels = c("Non significant", "Significant"), name = "Significance at 0.05") | |
159 p1 <- p1 + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90)) + ggplot2::xlab("Date") + ggplot2::ylab(colvar) | |
160 | |
161 ggplot2::ggsave(paste0("LCBD_per_", colvar, "_through_time.png"), p1) | |
162 } | |
163 | |
164 ####SCBD### | |
165 # Function to compute SCBD | |
166 library(dplyr) | |
167 make_scbd_uvc <- function(data_spe, z, data_beta) { | |
168 # Computation using beta.div {adespatial} on | |
169 # Hellinger-transformed species data | |
170 | |
171 # Which species have a SCBD larger than the mean SCBD? | |
172 spe_scbd <- data_beta$SCBD[data_beta$SCBD >= mean(data_beta$SCBD)] %>% | |
173 as.data.frame() %>% | |
174 tibble::rownames_to_column(var = "Taxon") %>% | |
175 dplyr::mutate("Methode" = z) | |
176 | |
177 return(spe_scbd) | |
178 } | |
179 | |
180 # Function to make a radar plot | |
181 | |
182 coord_radar <- function(theta = "x", start = 0, direction = 1) { | |
183 theta <- match.arg(theta, c("x", "y")) | |
184 r <- if (theta == "x") "y" else "x" | |
185 ggplot2::ggproto("CordRadar", ggplot2::coord_polar(theta = theta, start = start, | |
186 direction = sign(direction)), | |
187 is_linear = function(coord) TRUE) | |
188 } | |
189 | |
190 # Make the radar plot | |
191 radar_plot <- function(scbd_uvc_tc) { | |
192 uvc_rd_plot_data <- scbd_uvc_tc %>% | |
193 rename(scbd_score = ".") | |
194 | |
195 rad_uvc <- ggplot2::ggplot(uvc_rd_plot_data, ggplot2::aes(x = Taxon, y = scbd_score, group = Methode)) + | |
196 ggplot2::geom_line() + | |
197 ggplot2::geom_point(size = 3) + | |
198 coord_radar() + | |
199 ggplot2::theme_bw() + | |
200 ggplot2::theme(axis.text.x = ggplot2::element_text(size = 10), | |
201 legend.position = "bottom") | |
202 | |
203 ggplot2::ggsave("SCBD_Species_Radar_plot.png", rad_uvc) | |
204 } | |
205 | |
206 ## LCBD | |
207 | |
208 if (map) { | |
209 #Beta diversity | |
210 beta_div_ext(data_beta, data_xy, data_env) | |
211 } | |
212 | |
213 #Lcbd per places and time | |
214 compute_lcbd(data_beta, data_spe, data_num) | |
215 | |
216 #Lcbd of your choice | |
217 if (sepa) { | |
218 compute_lcbd2(data_beta, data_spe, data_num) | |
219 } | |
220 | |
221 ##SCBD | |
222 | |
223 scbd_uvc_tc <- make_scbd_uvc(data_spe, z = "TC", data_beta) | |
224 | |
225 radar_plot(scbd_uvc_tc) |