Mercurial > repos > ecology > ecoregion_clara_cluster
view GeoNN.R @ 3:844b5bf84164 draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit e03df85746a3b61a382a5ee7e3357a8bf42a5097
author | ecology |
---|---|
date | Wed, 11 Sep 2024 09:19:33 +0000 |
parents | 24a81631a8b5 |
children |
line wrap: on
line source
#Date : 09/02/2024 #Author : Seguineau Pauline #Load libraries library(tidyr) library(dplyr) library(sf) #load arguments args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("This tool needs at least one argument") }else{ enviro <- args[1] envlong <- as.numeric(args[2]) envlat <- as.numeric(args[3]) occu <- args[4] occulat <- as.numeric(args[5]) occulong <- as.numeric(args[6]) } env = read.table(enviro, header = TRUE, sep="\t") occ = read.table(occu, header = TRUE, sep = "\t") cols_env = c(names(env[envlong]),names(env[envlat])) cols_occ = c(names(occ[occulong]),names(occ[occulat])) ###calculate distances### #transform tables into sf object env_sf <- st_as_sf(env, coords = cols_env, crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") occ_sf <- st_as_sf(occ, coords = cols_occ, crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") #Find the indices of env_sf entities closest to each point in occ_sf. nearest_indices <- st_nearest_feature(occ_sf, env_sf) nearest_points <- env[nearest_indices, ] # Calculate distances between env_sf and occ_sf points distances <- st_distance(env_sf, occ_sf) #Extract the corresponding distances between occ and env nearest_distances <- numeric(length(nearest_indices)) for (i in 1:length(nearest_indices)) { nearest_distances[i] <- st_distance(env_sf[nearest_indices[i],], occ_sf[i,]) } #assemble occurrences and environmental parameters in the same file nearest_points <- nearest_points[, !names(nearest_points) %in% cols_env] #remove lat and long from env to clean data new_occ = cbind(occ, nearest_points) #Save the file write.table(new_occ, file = "occurrence_env.tsv",sep ="\t",quote = F, row.names = F,col.names = T) #create an information file with the distances between the points of the two files distance_info <- data.frame( occ_geometry = occ_sf$geometry, env_geometry = env_sf$geometry[nearest_indices], distance = nearest_distances ) colnames(distance_info)[1] <- "occ_geometry" colnames(distance_info)[2] <- "env_geometry" colnames(distance_info)[3] <- "Distances (meters)" #save the information file write.table(distance_info, file = "infos_file.tsv",sep ="\t",quote = F, row.names = F,col.names = T)