Mercurial > repos > ecology > ecoregion_cluster_estimate
view brt.R @ 3:001d7d101915 draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit e03df85746a3b61a382a5ee7e3357a8bf42a5097
author | ecology |
---|---|
date | Wed, 11 Sep 2024 09:19:49 +0000 |
parents | e94a25eed489 |
children |
line wrap: on
line source
#16/02/2023 ## Analyse BRT data ### Clean environment rm(list = ls(all.names = TRUE)) options(warn=1) ### load packages library(dismo, warn.conflicts = FALSE) library(gbm, warn.conflicts = FALSE) library(ggplot2, warn.conflicts = FALSE) #load arguments args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("This tool needs at least one argument") }else{ enviro <- args[1] species_files <- args[2] abio_para <- args[3] dec_env <- args[8] dec_species <- args[9] } ### load data env = read.table(enviro, dec = dec_env, header = TRUE, sep="\t", na.strings = "-9999") pred_vars = strsplit(abio_para, ",")[[1]] data_files = strsplit(species_files,",") pred.vars <- character(length(pred_vars)) for (i in seq_along(pred_vars)) { pred_var_col <- as.numeric(pred_vars[i]) pred.vars[i] <- names(env)[pred_var_col]} #environemental parameters #Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta #Load functions make.brt <- function(spe,data,pred.vars,env,nb_file){ cat(paste(" ", spe,":\n -> optimising BRT model ",sep="")) lr <- 0.05 no.trees <- 0 while ( no.trees < 1000 & lr > 0.0005 ) { cat(".") try(brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = lr,max.trees = 10000, plot.main = F)) # if the gbm does not converge, the return object is null or of size 0 if (!is.null(brt_step) ) { if (object.size(brt_step) > 0 ) { no.trees <- brt_step$gbm.call$best.trees print(no.trees) } } else { no.trees <- 0 print(no.trees) } # decrease the learning rate lr <- lr / 2 print(lr) } #plot if (is.null(brt_step)==FALSE){ pdf(file = paste("BRT-",spe,".pdf")) gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) dev.off() #total deviance explained as (Leathwick et al., 2006) total_deviance <- brt_step$self.statistics$mean.null cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance #Validation file valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} return(brt_step) } make.prediction.brt <- function(brt_step){ #predictions preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") preds <- as.data.frame(cbind(env$lat,env$long,preds)) colnames(preds) <- c("lat","long","Prediction.index") #carto ggplot()+ geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ scale_alpha(range = c(0,1), guide = "none")+ scale_fill_viridis_c( alpha = 1, begin = 0, end = 1, direction = -1, option = "D", values = NULL, space = "Lab", na.value = "grey50", guide = "colourbar", aesthetics = "fill")+ xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ theme(plot.title = element_text(size = 10))+ theme(axis.title.y = element_text(size = 10))+ theme(axis.title.x = element_text(size = 10))+ theme(axis.text.y = element_text(size = 10))+ theme(axis.text.x = element_text(size = 10))+ theme(legend.text = element_text(size = 10))+ theme(legend.title = element_text(size = 10))+ coord_quickmap() output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) #Write prediction in a file preds <- cbind(preds,spe) write.table(preds, paste(nb_file,"_brts_pred_ceamarc.tsv",sep=""), quote=FALSE, dec=".", row.names=F, col.names=!file.exists(paste(nb_file,"_brts_pred_ceamarc.tsv",sep="")),append = T,sep="\t") } #### RUN BRT #### nb_file = 0 # Creating the %!in% operator `%!in%` <- Negate(`%in%`) # Data file browsing for (file in data_files[[1]]) { # Reading the file species_data <- read.table(file, dec = dec_species, sep = "\t", header = TRUE, na.strings = "NA", colClasses = "numeric") nb_file = nb_file + 1 # List to store species to predict sp = list() # Selection of columns that are not in 'env' and that are not coordinates or stations for (n in names(species_data)) { if (n %!in% names(env) && n != 'station' && n != 'decimalLatitude' && n != 'decimalLongitude' && n!='lat' && n!='long'){ sp = c(sp,n) } } # Making predictions for each species for (spe in sp){ try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) } } #Display of abiotic parameters cat("Here is the list of your abiotic parameters:\n") cat(paste(pred.vars, collapse = ", "), "\n")