Mercurial > repos > ecology > ecoregion_eco_map
diff brt.R @ 1:b38b954b92b9 draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 459ba1277acd7d8d4a02f90dbd7ff444bf8eac92
author | ecology |
---|---|
date | Wed, 24 Jan 2024 15:53:20 +0000 |
parents | 3d750279158b |
children | c6b1bf7b0ac6 |
line wrap: on
line diff
--- a/brt.R Wed Oct 18 09:58:34 2023 +0000 +++ b/brt.R Wed Jan 24 15:53:20 2024 +0000 @@ -1,109 +1,121 @@ -#16/02/2023 -## Analyse BRT data Ceamarc - -### Clean environment -rm(list = ls(all.names = TRUE)) -options(warn=-1) - -### load packages - -library(dismo, warn.conflicts = FALSE) -library(gbm, warn.conflicts = FALSE) -library(ggplot2, warn.conflicts = FALSE) - - -#load arguments -args = commandArgs(trailingOnly=TRUE) -if (length(args)==0) -{ - stop("This tool needs at least one argument") -}else{ - enviro <- args[1] - species_files <- args[2] - abio_para <- args[3] -} - -### load data - -env = read.table(enviro, header = TRUE, dec = ".", na.strings = "-9999") -pred.vars = strsplit(abio_para, ",")[[1]] -data_files = strsplit(species_files,",") - -#environemental parameters -#Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta - -#Load functions - -make.brt <- function(spe,data,pred.vars,env,nb_file){ - brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = 0.0001,max.trees = 10000,plot.main = F) - #plot - if (is.null(brt_step)==FALSE){ - pdf(file = paste("BRT-",spe,".pdf")) - gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) - dev.off() - #total deviance explained as (Leathwick et al., 2006) - total_deviance <- brt_step$self.statistics$mean.null - cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean - total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance - #Validation file - valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) - write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} - - return(brt_step) - } - -make.prediction.brt <- function(brt_step){ - #predictions - preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") - preds <- as.data.frame(cbind(env$lat,env$long,preds)) - colnames(preds) <- c("lat","long","Prediction.index") - #carto - ggplot()+ - geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ - geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ - scale_alpha(range = c(0,1), guide = "none")+ - scale_fill_viridis_c( - alpha = 1, - begin = 0, - end = 1, - direction = -1, - option = "D", - values = NULL, - space = "Lab", - na.value = "grey50", - guide = "colourbar", - aesthetics = "fill")+ - xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ - theme(plot.title = element_text(size = 10))+ - theme(axis.title.y = element_text(size = 10))+ - theme(axis.title.x = element_text(size = 10))+ - theme(axis.text.y = element_text(size = 10))+ - theme(axis.text.x = element_text(size = 10))+ - theme(legend.text = element_text(size = 10))+ - theme(legend.title = element_text(size = 10))+ - coord_quickmap() - output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) - - #Write prediction in a file - preds <- cbind(preds,spe) - write.table(preds, paste(nb_file,"_brts_pred_ceamarc.txt",sep=""), quote=FALSE, dec=".", row.names=F, col.names=T,append = T) -} - -#### RUN BRT #### -nb_file = 0 - -for (file in data_files[[1]]) { - species_data <- read.table(file, dec = ",", sep = ";", header = TRUE, na.strings = "na", colClasses = "numeric") - nb_file = nb_file + 1 - `%!in%` <- Negate(`%in%`) - sp = list() - for (n in names(species_data)) { - if (n %!in% names(env) && n != 'station'){ - sp = cbind(sp,n) - } - } - - for (spe in sp){ - try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) - } -} +#16/02/2023 +## Analyse BRT data + +### Clean environment +rm(list = ls(all.names = TRUE)) +options(warn=-1) + +### load packages + +library(dismo, warn.conflicts = FALSE) +library(gbm, warn.conflicts = FALSE) +library(ggplot2, warn.conflicts = FALSE) + + +#load arguments +args = commandArgs(trailingOnly=TRUE) +if (length(args)==0) +{ + stop("This tool needs at least one argument") +}else{ + enviro <- args[1] + species_files <- args[2] + abio_para <- args[3] + dec_env <- args[8] + dec_species <- args[9] +} + +### load data + +env = read.table(enviro, dec = dec_env, header = TRUE, sep="\t", na.strings = "-9999") +pred_vars = strsplit(abio_para, ",")[[1]] +data_files = strsplit(species_files,",") + +pred.vars <- character(length(pred_vars)) + +for (i in seq_along(pred_vars)) { + pred_var_col <- as.numeric(pred_vars[i]) + pred.vars[i] <- names(env)[pred_var_col]} + +#environemental parameters +#Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta + +#Load functions + +make.brt <- function(spe,data,pred.vars,env,nb_file){ + brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = 0.0001,max.trees = 10000,plot.main = F) + #plot + if (is.null(brt_step)==FALSE){ + pdf(file = paste("BRT-",spe,".pdf")) + gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) + dev.off() + #total deviance explained as (Leathwick et al., 2006) + total_deviance <- brt_step$self.statistics$mean.null + cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean + total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance + #Validation file + valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) + write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} + + return(brt_step) + } + +make.prediction.brt <- function(brt_step){ + #predictions + preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") + preds <- as.data.frame(cbind(env$lat,env$long,preds)) + colnames(preds) <- c("lat","long","Prediction.index") + #carto + ggplot()+ + geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ + geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ + scale_alpha(range = c(0,1), guide = "none")+ + scale_fill_viridis_c( + alpha = 1, + begin = 0, + end = 1, + direction = -1, + option = "D", + values = NULL, + space = "Lab", + na.value = "grey50", + guide = "colourbar", + aesthetics = "fill")+ + xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ + theme(plot.title = element_text(size = 10))+ + theme(axis.title.y = element_text(size = 10))+ + theme(axis.title.x = element_text(size = 10))+ + theme(axis.text.y = element_text(size = 10))+ + theme(axis.text.x = element_text(size = 10))+ + theme(legend.text = element_text(size = 10))+ + theme(legend.title = element_text(size = 10))+ + coord_quickmap() + output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) + + #Write prediction in a file + preds <- cbind(preds,spe) + write.table(preds, paste(nb_file,"_brts_pred_ceamarc.tsv",sep=""), quote=FALSE, dec=".", row.names=F, col.names=T,append = T,sep="\t") +} + +#### RUN BRT #### +nb_file = 0 + +for (file in data_files[[1]]) { + species_data <- read.table(file, dec = dec_species, sep = "\t", header = TRUE, na.strings = "NA", colClasses = "numeric") + nb_file = nb_file + 1 + `%!in%` <- Negate(`%in%`) + sp = list() + for (n in names(species_data)) { + if (n %!in% names(env) && n != 'station'){ + sp = cbind(sp,n) + } + } + for (spe in sp){ + try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) + } +} + +cat("Here is the list of your abiotic parameters:\n") +cat(paste(pred.vars, collapse = ", "), "\n") + +