Mercurial > repos > ecology > ecoregion_geonearestneighbor
changeset 3:4ed3e4f04b79 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 1f5e22a210b8a395f1c7b48f54e03e781a1b34c4
author | ecology |
---|---|
date | Wed, 14 May 2025 13:48:46 +0000 |
parents | ace69a8ec1c3 |
children | |
files | claraguess.R test-data/enviro.tabular test-data/preds.tabular test-data/taxas.tabular |
diffstat | 4 files changed, 100 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/claraguess.R Wed May 14 13:48:46 2025 +0000 @@ -0,0 +1,75 @@ +##30/04/2025 +##Jean Le Cras +### Clustering with Clara algorithm with an option to determine the optimal number of clusters based on SIH index + +#load libraries +library(cluster) +library(dplyr) +library(tidyverse) + +#load arguments +args <- commandArgs(trailingOnly = TRUE) +if (length(args)==0) { + stop("This tool needs at least one argument") +} + +#load data +enviro_path <- args[1] +preds_path <- args[2] +taxas_path <- args[3] +type <- args[4] +k <- as.integer(args[5]) +metric <- args[6] +samples <- as.integer(args[7]) +env.data <- read.table(enviro_path, sep = "\t", header = TRUE, dec = ".", na.strings = "-9999") + +data_split = str_split(preds_path, ",") +preds.data = NULL + +for (i in 1:length(data_split[[1]])) { + df <- read.table(data_split[[1]][i], dec=".", sep="\t", header=T, na.strings="NA") + preds.data <- rbind(preds.data, df) + remove(df) +} + +names(preds.data) <- c("lat", "long", "pred", "taxa") + +development_traits <- str_split(readLines(taxas_path), "\t") + +#select the clara model with the optimal number of clusters +model <- NULL + +if (type == "auto") { + sih_scores <- c() + models <- list() + + for (i in 2:k) { + models[[i]] <- clara(preds.data$pred, i, metric = metric, samples = samples, stand = TRUE) + sih_scores[i] <- models[[i]]$silinfo$avg.width + } + png("sih_scores.png") + plot(2:k, sih_scores[2:k], type = "b", xlab = "Number of clusters", ylab = "SIH index") + dev.off() + + best_k <- which.max(sih_scores[3:k]) + 2 + model <- models[[best_k]] + k <- best_k +} else { + model <- clara(preds.data$pred, k, metric = metric, samples = samples, stand = TRUE) +} + +#saving results +png("silhouette_plot.png") +plot(silhouette(model), main = paste("Silhouette plot for k =", k)) +dev.off() + +data.test <- matrix(preds.data$pred, nrow = nrow(env.data), ncol = nrow(preds.data) / nrow(env.data)) +data.test <- data.frame(data.test) +names(data.test) <- unique(preds.data$development) + +full.data <- cbind(preds.data[1:nrow(data.test), 1:2], model$clustering) +names(full.data) <- c("lat", "long", "cluster") +full.data <- cbind(full.data, data.test, env.data[, 3:ncol(env.data)]) + +write.table(full.data[1:3], file = "data_cluster.tabular", quote = FALSE, sep = "\t", row.names = FALSE) +write.table(full.data, file = "clustered_taxas_env.tabular", quote = FALSE, sep = "\t", row.names = FALSE) \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/enviro.tabular Wed May 14 13:48:46 2025 +0000 @@ -0,0 +1,11 @@ +"long" "lat" "Carbo" "Grav" +"152250" 145.35 -66.91 1.06 0.92 +"12010" 139.91 -65.75 1.6 25.77 +"88982" 139.8 -66.34 1.16 2.91 +"109687" 144.67 -66.48 1.23 13.74 +"124999" 142.27 -66.59 3.31 3.13 +"119451" 141.04 -66.55 2.99 3.31 +"128864" 140.8 -66.62 2.76 2.95 +"125833" 142.26 -66.6 3.3 3.12 +"113403" 144.09 -66.5 1.4 8.95 +"56804" 140.83 -66.11 2.33 9.83
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/preds.tabular Wed May 14 13:48:46 2025 +0000 @@ -0,0 +1,11 @@ +"lat" "long" "Prediction.index" "spe" +"148207" -66.83 144.41 0.127117028637464 "Development_direct.development" +"175359" -65.83 141.48 0.000126665227113262 "Development_lecithotrophic" +"226550" -66.2 144.88 4.3718554237373e-05 "Development_lecithotrophic" +"132855" -66.66 142.98 0.512219435270445 "Development_direct.development" +"380560" -66.19 145.47 0.455627207042825 "Development_planktotrophic" +"361759" -66.06 140.61 0.529983873632234 "Development_planktotrophic" +"345639" -65.95 140.92 0.471266742957099 "Development_planktotrophic" +"27420" -65.9 144.56 0.0224605950764499 "Development_direct.development" +"207288" -66.07 143.27 4.36554587548896e-05 "Development_lecithotrophic" +"349308" -65.98 140.02 0.402308937370468 "Development_planktotrophic"