Mercurial > repos > ecology > ecoregion_taxa_seeker
comparison brt.R @ 0:e3cd588fd14a draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 2a2ae892fa2dbc1eff9c6a59c3ad8f3c27c1c78d
author | ecology |
---|---|
date | Wed, 18 Oct 2023 09:58:17 +0000 |
parents | |
children | 9dc992f80c25 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e3cd588fd14a |
---|---|
1 #16/02/2023 | |
2 ## Analyse BRT data Ceamarc | |
3 | |
4 ### Clean environment | |
5 rm(list = ls(all.names = TRUE)) | |
6 options(warn=-1) | |
7 | |
8 ### load packages | |
9 | |
10 library(dismo, warn.conflicts = FALSE) | |
11 library(gbm, warn.conflicts = FALSE) | |
12 library(ggplot2, warn.conflicts = FALSE) | |
13 | |
14 | |
15 #load arguments | |
16 args = commandArgs(trailingOnly=TRUE) | |
17 if (length(args)==0) | |
18 { | |
19 stop("This tool needs at least one argument") | |
20 }else{ | |
21 enviro <- args[1] | |
22 species_files <- args[2] | |
23 abio_para <- args[3] | |
24 } | |
25 | |
26 ### load data | |
27 | |
28 env = read.table(enviro, header = TRUE, dec = ".", na.strings = "-9999") | |
29 pred.vars = strsplit(abio_para, ",")[[1]] | |
30 data_files = strsplit(species_files,",") | |
31 | |
32 #environemental parameters | |
33 #Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta | |
34 | |
35 #Load functions | |
36 | |
37 make.brt <- function(spe,data,pred.vars,env,nb_file){ | |
38 brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = 0.0001,max.trees = 10000,plot.main = F) | |
39 #plot | |
40 if (is.null(brt_step)==FALSE){ | |
41 pdf(file = paste("BRT-",spe,".pdf")) | |
42 gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) | |
43 dev.off() | |
44 #total deviance explained as (Leathwick et al., 2006) | |
45 total_deviance <- brt_step$self.statistics$mean.null | |
46 cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean | |
47 total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance | |
48 #Validation file | |
49 valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) | |
50 write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} | |
51 | |
52 return(brt_step) | |
53 } | |
54 | |
55 make.prediction.brt <- function(brt_step){ | |
56 #predictions | |
57 preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") | |
58 preds <- as.data.frame(cbind(env$lat,env$long,preds)) | |
59 colnames(preds) <- c("lat","long","Prediction.index") | |
60 #carto | |
61 ggplot()+ | |
62 geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ | |
63 geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ | |
64 scale_alpha(range = c(0,1), guide = "none")+ | |
65 scale_fill_viridis_c( | |
66 alpha = 1, | |
67 begin = 0, | |
68 end = 1, | |
69 direction = -1, | |
70 option = "D", | |
71 values = NULL, | |
72 space = "Lab", | |
73 na.value = "grey50", | |
74 guide = "colourbar", | |
75 aesthetics = "fill")+ | |
76 xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ | |
77 theme(plot.title = element_text(size = 10))+ | |
78 theme(axis.title.y = element_text(size = 10))+ | |
79 theme(axis.title.x = element_text(size = 10))+ | |
80 theme(axis.text.y = element_text(size = 10))+ | |
81 theme(axis.text.x = element_text(size = 10))+ | |
82 theme(legend.text = element_text(size = 10))+ | |
83 theme(legend.title = element_text(size = 10))+ | |
84 coord_quickmap() | |
85 output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) | |
86 | |
87 #Write prediction in a file | |
88 preds <- cbind(preds,spe) | |
89 write.table(preds, paste(nb_file,"_brts_pred_ceamarc.txt",sep=""), quote=FALSE, dec=".", row.names=F, col.names=T,append = T) | |
90 } | |
91 | |
92 #### RUN BRT #### | |
93 nb_file = 0 | |
94 | |
95 for (file in data_files[[1]]) { | |
96 species_data <- read.table(file, dec = ",", sep = ";", header = TRUE, na.strings = "na", colClasses = "numeric") | |
97 nb_file = nb_file + 1 | |
98 `%!in%` <- Negate(`%in%`) | |
99 sp = list() | |
100 for (n in names(species_data)) { | |
101 if (n %!in% names(env) && n != 'station'){ | |
102 sp = cbind(sp,n) | |
103 } | |
104 } | |
105 | |
106 for (spe in sp){ | |
107 try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) | |
108 } | |
109 } |