Mercurial > repos > ecology > ecoregion_taxa_seeker
comparison nb_clust_G.R @ 0:e3cd588fd14a draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 2a2ae892fa2dbc1eff9c6a59c3ad8f3c27c1c78d
author | ecology |
---|---|
date | Wed, 18 Oct 2023 09:58:17 +0000 |
parents | |
children | 9dc992f80c25 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e3cd588fd14a |
---|---|
1 # Script to determine the optimal number of clusters thanks to the optimization of the SIH index and to produce the files needed in the next step of clustering | |
2 | |
3 #load packages | |
4 library(cluster) | |
5 library(dplyr) | |
6 library(tidyverse) | |
7 | |
8 #load arguments | |
9 args = commandArgs(trailingOnly=TRUE) | |
10 if (length(args)==0) | |
11 { | |
12 stop("This tool needs at least one argument") | |
13 }else{ | |
14 enviro <- args[1] | |
15 taxa_list <- args[2] | |
16 preds <- args[3] | |
17 max_k <- as.numeric(args[4]) | |
18 metric <- args[5] | |
19 sample <- as.numeric(args[6]) | |
20 } | |
21 | |
22 #load data | |
23 | |
24 env.data <- read.table(enviro, header = TRUE, dec = ".", na.strings = "-9999.00") | |
25 | |
26 ##List of modelled taxa used for clustering | |
27 tv <- read.table(taxa_list, dec=".", sep=" ", header=F, na.strings = "NA") | |
28 names(tv) <- c("a") | |
29 | |
30 ################Grouping of taxa if multiple prediction files entered ################ | |
31 | |
32 data_split = str_split(preds,",") | |
33 data.bio = NULL | |
34 | |
35 for (i in 1:length(data_split[[1]])) { | |
36 data.bio1 <- read.table(data_split[[1]][i], dec=".", sep=" ", header=T, na.strings = "NA") | |
37 data.bio <- rbind(data.bio,data.bio1) | |
38 remove(data.bio1) | |
39 } | |
40 | |
41 names(data.bio) <- c("lat", "long", "pred", "taxon") | |
42 | |
43 #keep selected taxa | |
44 data.bio <- data.bio[which(data.bio$taxon %in% tv$a),] | |
45 | |
46 write.table(data.bio,file="data_bio.tsv",sep="\t",quote=F,row.names=F) | |
47 | |
48 #format data | |
49 | |
50 test3 <- matrix(data.bio$pred , nrow = nrow(env.data), ncol = nrow(data.bio)/nrow(env.data)) | |
51 test3 <- data.frame(test3) | |
52 names(test3) <- unique(data.bio$taxon) | |
53 | |
54 write.table(test3, file="data_to_clus.tsv", sep="\t",quote=F,row.names=F) | |
55 | |
56 #Max number of clusters to test | |
57 max_k <- max_k | |
58 | |
59 # Initialization of vectors to store SIH indices | |
60 sih_values <- rep(0, max_k) | |
61 | |
62 # Calculation of the SIH index for each number of clusters | |
63 for (k in 2:max_k) { | |
64 # Clara execution | |
65 clara_res <- clara(test3, k, metric =metric, samples = sample, sampsize = min(nrow(test3), (nrow(data.bio)/nrow(test3))+2*k)) | |
66 # Calculation of the SIH index | |
67 sih_values[k] <- clara_res$silinfo$avg.width | |
68 } | |
69 | |
70 # Plot SIH Index Chart by Number of Clusters | |
71 png("Indices_SIH.png") | |
72 plot(2:max_k, sih_values[2:max_k], type = "b", xlab = "Nombre de clusters", ylab = "Indice SIH") | |
73 dev.off() |