Mercurial > repos > ecology > interpolation_run_idw_interpolation
comparison run_idw_interpolation.R @ 0:d07fcc660f3c draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/interpolation commit 450e4496f243d6e94d5238358873bbc014fe2f08
author | ecology |
---|---|
date | Mon, 08 Jan 2024 10:32:25 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d07fcc660f3c |
---|---|
1 library("getopt") | |
2 library("sf") | |
3 library("tmap") | |
4 library("RColorBrewer") | |
5 library("raster") | |
6 library("gstat") | |
7 | |
8 args = commandArgs(trailingOnly=TRUE) | |
9 option_specification = matrix(c( | |
10 'observationsCsv', 'i1', 1, 'character', | |
11 'latitudeColumn', 'i2', 1, 'double', | |
12 'longitudeColumn', 'i3', 1, 'double', | |
13 'observationsColumn', 'i4', 1, 'double', | |
14 'studyArea', 'i5', 1, 'character', | |
15 'idwPower', 'i6', 1, 'double', | |
16 'samplePoints', 'i7', 1, 'double', | |
17 'sampleType', 'i8', 1, 'character', | |
18 'legendLabel', 'i9', 1, 'character', | |
19 'legendPosition', 'i10', 1, 'character', | |
20 'numberClasses', 'i11', 1, 'double', | |
21 'dotSize', 'i12', 1, 'double', | |
22 'colorType', 'i13', 1, 'character', | |
23 'testCase', 'i14', 1, 'character', | |
24 'outputData', 'o', 2, 'character' | |
25 ), byrow=TRUE, ncol=4); | |
26 options = getopt(option_specification); | |
27 | |
28 obsData <- read.csv(file=options$observationsCsv, sep = ',', header = TRUE) | |
29 latitudeColumn <- options$latitudeColumn | |
30 longitudeColumn <- options$longitudeColumn | |
31 observationsColumn <- options$observationsColumn | |
32 studyArea <- options$studyArea | |
33 idwPower <- options$idwPower | |
34 samplePoints <- options$samplePoints | |
35 sampleType <- options$sampleType | |
36 legendLabel <- options$legendLabel | |
37 legendPosition <- options$legendPosition | |
38 numberClasses <- options$numberClasses | |
39 dotSize <- options$dotSize | |
40 colorType <- options$colorType | |
41 testCase <- options$testCase | |
42 | |
43 #cat("\n observationsCsv", options$observationsCsv) | |
44 cat("\n latitudeColumn", latitudeColumn) | |
45 cat("\n longitudeColumn", longitudeColumn) | |
46 cat("\n observationsColumn", observationsColumn) | |
47 #cat("\n studyArea", studyArea) | |
48 cat("\n idwPower", idwPower) | |
49 cat("\n samplePoints", samplePoints) | |
50 cat("\n sampleType", sampleType) | |
51 cat("\n legendLabel", legendLabel) | |
52 cat("\n legendposition", legendPosition) | |
53 cat("\n numberClasses", numberClasses) | |
54 cat("\n dotSize", dotSize) | |
55 cat("\n colorType", colorType) | |
56 cat("\n testCase", testCase) | |
57 #cat("\n outputData: ", options$outputData) | |
58 | |
59 coordinates(obsData) <- c(colnames(obsData)[longitudeColumn], colnames(obsData)[latitudeColumn]) | |
60 sf_obsData <- as_Spatial(st_as_sf(obsData)) | |
61 | |
62 polygon <- as_Spatial(st_read(studyArea)) | |
63 sf_obsData@bbox<-polygon@bbox | |
64 | |
65 runInterpolation <- function(points, values, interpolation_power, sample_points, sample_type){ | |
66 if (testCase == "true") { | |
67 cat("\n set seed!") | |
68 set.seed(123) | |
69 } | |
70 grd <- as.data.frame(spsample(points, sample_type, n=sample_points)) | |
71 names(grd) <- c("X", "Y") | |
72 coordinates(grd) <- c("X", "Y") | |
73 gridded(grd) <- TRUE | |
74 fullgrid(grd) <- TRUE | |
75 | |
76 proj4string(points) <- proj4string(points) | |
77 proj4string(grd) <- proj4string(points) | |
78 return(gstat::idw(values ~ 1, points, newdata=grd, idp=interpolation_power)) | |
79 } | |
80 | |
81 plotInterpolationMap <- function(raster, points, legend_label){ | |
82 plot <- tm_shape(raster) + | |
83 tm_raster(n=numberClasses,palette = rev(brewer.pal(7, colorType)), auto.palette.mapping = FALSE, | |
84 title=legend_label) + | |
85 tm_shape(points) + tm_dots(size=dotSize) + | |
86 tm_legend(legend.outside=legendPosition) | |
87 return(plot) | |
88 } | |
89 | |
90 sf_obsData.idw <- runInterpolation(sf_obsData, obsData$measurement, idwPower, samplePoints, sampleType) | |
91 | |
92 raster_object <- raster(sf_obsData.idw) | |
93 raster_object.mask <- mask(raster_object, polygon) | |
94 | |
95 idw <- plotInterpolationMap(raster_object.mask, sf_obsData, legendLabel) | |
96 idw | |
97 | |
98 png(options$outputData) | |
99 idw | |
100 dev.off() |