Mercurial > repos > ecology > obis_data
view obisindicators.r @ 0:1fcd81d65467 draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/obisindicators commit b377ff767e3051f301c2f02cfe3e1a17b285ede4
author | ecology |
---|---|
date | Thu, 18 Jan 2024 09:33:52 +0000 |
parents | |
children |
line wrap: on
line source
#Rscript ########################################### ## Mapping alpha and beta diversity ## ########################################### #####Packages : obisindicators # dplyr # sf # ggplot2 # rnaturalearth # rnaturalearthdata # viridis # dggridr library(magrittr) ## remotes::install_github("r-barnes/dggridR") #####Load arguments args <- commandArgs(trailingOnly = TRUE) # url for the S2 subset if (length(args) < 4) { stop("This tool needs at least 4 argument : longitude, latitude, species and number of records") }else { raster <- args[1] hr <- args[2] sep <- as.character(args[3]) longitude <- as.numeric(args[4]) latitude <- as.numeric(args[5]) spe <- as.numeric(args[6]) rec <- as.numeric(args[7]) crs <- as.numeric(args[8]) reso <- as.numeric(args[9]) source(args[10]) source(args[11]) source(args[12]) } if (hr == "false") { hr <- FALSE }else { hr <- TRUE } if (sep == "t") { sep <- "\t" } if (crs == "0") { crs <- "+proj=robin +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs" } #####Import data occ <- read.table(raster, sep = sep, dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") # occ_1M OR occ_SAtlantic occ <- na.omit(occ) #Get biological occurrences #Use the 1 million records subsampled from the full OBIS dataset colnames(occ)[longitude] <- c("decimalLongitude") colnames(occ)[latitude] <- c("decimalLatitude") colnames(occ)[spe] <- c("species") colnames(occ)[rec] <- c("records") #Create a discrete global grid #Create an ISEA discrete global grid of resolution 9 using the dggridR package: dggs <- dggridR::dgconstruct(projection = "ISEA", topology = "HEXAGON", res = reso) #Then assign cell numbers to the occurrence data occ$cell <- dggridR::dgGEO_to_SEQNUM(dggs, occ$decimalLongitude, occ$decimalLatitude)[["seqnum"]] #Calculate indicators #The following function calculates the number of records, species richness, Simpson index, Shannon index, Hurlbert index (n = 50), and Hill numbers for each cell. #Perform the calculation on species level data idx <- calc_indicators(occ) write.table(idx, file = "Index.csv", sep = ",", dec = ".", na = " ", col.names = TRUE, row.names = FALSE, quote = FALSE) #add cell geometries to the indicators table (idx) grid_idx <- sf::st_wrap_dateline(dggridR::dgcellstogrid(dggs, idx$cell)) colnames(grid_idx) <- c("cell", "geometry") grid <- dplyr::left_join(grid_idx, idx, by = "cell") #Plot maps of indicators #Let’s look at the resulting indicators in map form. #Indice ES(50) es_50_map <- gmap_indicator(grid, "es", label = "ES(50)", crs = crs) es_50 <- ggplot2::ggsave("ES_50.png", es_50_map, scale = 0.38, width = 12, height = 7, units = "in", dpi = 300, limitsize = TRUE) # Shannon index shannon_map <- gmap_indicator(grid, "shannon", label = "Shannon index", crs = crs) shannon <- ggplot2::ggsave("Shannon_index.png", shannon_map, scale = 0.38, width = 12, height = 7, units = "in", dpi = 300, limitsize = TRUE) # Number of records, log10 scale, Geographic projection records_map <- gmap_indicator(grid, "n", label = "# of records", trans = "log10", crs = crs) records <- ggplot2::ggsave("Records.png", records_map, scale = 0.38, width = 12, height = 7, units = "in", dpi = 300, limitsize = TRUE) # Simpson index simpson_map <- gmap_indicator(grid, "simpson", label = "Simpson index", crs = crs) simpson <- ggplot2::ggsave("Simpson_index.png", simpson_map, scale = 0.38, width = 12, height = 7, units = "in", dpi = 300, limitsize = TRUE) # maxp maxp_map <- gmap_indicator(grid, "maxp", label = "maxp index", crs = crs) maxp <- ggplot2::ggsave("Maxp.png", maxp_map, scale = 0.38, width = 12, height = 7, units = "in", dpi = 300, limitsize = TRUE) #Mapping es_50 shannon simpson maxp records