Mercurial > repos > ecology > srs_diversity_maps
comparison pca_raster.r @ 0:9adccd3da70c draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:37:37 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9adccd3da70c |
---|---|
1 #Rscript | |
2 | |
3 ########################################### | |
4 ## Getting PCA raster ## | |
5 ########################################### | |
6 | |
7 #####Packages : stars | |
8 # utils | |
9 # biodivmapr | |
10 # raster | |
11 # sf | |
12 # mapview | |
13 # leafpop | |
14 # RColorBrewer | |
15 # labdsv | |
16 # rgdal | |
17 # ggplot2 | |
18 # gridExtra | |
19 ## remotes::install_github("jbferet/biodivMapR") | |
20 #####Load arguments | |
21 | |
22 args <- commandArgs(trailingOnly = TRUE) | |
23 | |
24 #####Import the S2 data | |
25 | |
26 if (length(args) < 1) { | |
27 stop("This tool needs at least 1 argument") | |
28 }else { | |
29 data_raster <- args[1] | |
30 rasterheader <- args[2] | |
31 data <- args[3] | |
32 typepca <- as.character(args[4]) | |
33 source(args[5]) | |
34 } | |
35 | |
36 ################################################################################ | |
37 ## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ## | |
38 ################################################################################ | |
39 # expected to be in ENVI HDR | |
40 | |
41 if (data_raster == "") { | |
42 #Create a directory where to unzip your folder of data | |
43 dir.create("data_dir") | |
44 unzip(data, exdir = "data_dir") | |
45 # Path to raster | |
46 data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") | |
47 input_image_file <- file.path("data_dir/results/Reflectance", data_raster[1]) | |
48 input_header_file <- file.path("data_dir/results/Reflectance", data_raster[2]) | |
49 | |
50 } else { | |
51 input_image_file <- file.path(getwd(), data_raster, fsep = "/") | |
52 input_header_file <- file.path(getwd(), rasterheader, fsep = "/") | |
53 } | |
54 | |
55 ################################################################################ | |
56 ## PROCESS IMAGE ## | |
57 ################################################################################ | |
58 # 1- Filter data in order to discard non vegetated / shaded / cloudy pixels | |
59 print("PERFORM PCA ON RASTER") | |
60 pca_output <- biodivMapR::perform_PCA(Input_Image_File = input_image_file, Input_Mask_File = input_mask_file, | |
61 Output_Dir = output_dir, TypePCA = typepca, FilterPCA = filterpca, nbCPU = nbcpu, MaxRAM = maxram) | |
62 | |
63 | |
64 pca_path <- file.path(output_dir, basename(data_raster), typepca, "PCA", "OutputPCA_8_PCs") | |
65 pca_raster <- raster::raster(pca_path) | |
66 get_pca <- convert_raster(pca_raster) | |
67 | |
68 colnames(get_pca) <- c("PCA", "longitude", "latitude") | |
69 plot_indices(get_pca, titre = "PCA") | |
70 | |
71 write.table(get_pca, file = "PCA.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) | |
72 #### Get the raster layer files | |
73 pca_files <- file.path("RESULTS", basename(data_raster), typepca, "PCA") | |
74 to_dir_short <- output_dir | |
75 file.copy(pca_files, to_dir_short) #copy files from long to short paths |