Mercurial > repos > ecology > srs_global_indices
comparison alpha_beta.r @ 0:5cae678042ec draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:36:33 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5cae678042ec |
---|---|
1 #Rscript | |
2 | |
3 ########################################### | |
4 ## Mapping alpha and beta diversity ## | |
5 ########################################### | |
6 | |
7 #####Packages : stars | |
8 # utils | |
9 # biodivmapr | |
10 # raster | |
11 # sf | |
12 # mapview | |
13 # leafpop | |
14 # RColorBrewer | |
15 # labdsv | |
16 # rgdal | |
17 # ggplot2 | |
18 # gridExtra | |
19 | |
20 #####Load arguments | |
21 | |
22 args <- commandArgs(trailingOnly = TRUE) | |
23 | |
24 #####Import the S2 data | |
25 | |
26 if (length(args) < 1) { | |
27 stop("This tool needs at least 1 argument") | |
28 }else { | |
29 data_raster <- args[1] | |
30 rasterheader <- args[2] | |
31 data <- args[3] | |
32 # type of PCA: | |
33 # PCA: no rescaling of the data | |
34 # SPCA: rescaling of the data | |
35 typepca <- as.character(args[4]) | |
36 alpha <- as.logical(args[5]) | |
37 beta <- as.logical(args[6]) | |
38 funct <- as.logical(args[7]) | |
39 all <- as.logical(args[8]) | |
40 nbcpu <- as.integer(args[9]) | |
41 source(args[10]) | |
42 } | |
43 | |
44 ################################################################################ | |
45 ## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ## | |
46 ################################################################################ | |
47 if (data_raster == "") { | |
48 #Create a directory where to unzip your folder of data | |
49 dir.create("data_dir") | |
50 unzip(data, exdir = "data_dir") | |
51 # Path to raster | |
52 data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") | |
53 input_image_file <- file.path("data_dir/results/Reflectance", data_raster[1]) | |
54 input_header_file <- file.path("data_dir/results/Reflectance", data_raster[2]) | |
55 | |
56 } else { | |
57 input_image_file <- file.path(getwd(), data_raster, fsep = "/") | |
58 input_header_file <- file.path(getwd(), rasterheader, fsep = "/") | |
59 } | |
60 | |
61 ################################################################################ | |
62 ## PROCESS IMAGE ## | |
63 ################################################################################ | |
64 # 1- Filter data in order to discard non vegetated / shaded / cloudy pixels | |
65 | |
66 print("PERFORM PCA ON RASTER") | |
67 pca_output <- biodivMapR::perform_PCA(Input_Image_File = input_image_file, Input_Mask_File = input_mask_file, | |
68 Output_Dir = output_dir, TypePCA = typepca, FilterPCA = filterpca, nbCPU = nbcpu, MaxRAM = maxram) | |
69 | |
70 pca_files <- pca_output$PCA_Files | |
71 pix_per_partition <- pca_output$Pix_Per_Partition | |
72 nb_partitions <- pca_output$nb_partitions | |
73 # path for the updated mask | |
74 input_mask_file <- pca_output$MaskPath | |
75 | |
76 | |
77 selected_pcs <- seq(1, dim(raster::stack(input_image_file))[3]) | |
78 | |
79 selected_pcs <- all(selected_pcs) | |
80 ################################################################################ | |
81 ## MAP ALPHA AND BETA DIVERSITY ## | |
82 ################################################################################ | |
83 print("MAP SPECTRAL SPECIES") | |
84 | |
85 kmeans_info <- biodivMapR::map_spectral_species(Input_Image_File = input_image_file, Output_Dir = output_dir, PCA_Files = pca_files, Input_Mask_File = input_mask_file, SelectedPCs = selected_pcs, Pix_Per_Partition = pix_per_partition, nb_partitions = nb_partitions, TypePCA = typepca, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters) | |
86 | |
87 image_name <- tools::file_path_sans_ext(basename(input_image_file)) | |
88 if (alpha == TRUE || beta == TRUE || all == TRUE) { | |
89 ## alpha | |
90 print("MAP ALPHA DIVERSITY") | |
91 index_alpha <- c("Shannon") | |
92 alpha_div <- biodivMapR::map_alpha_div(Input_Image_File = input_image_file, Output_Dir = output_dir, TypePCA = typepca, window_size = window_size, nbCPU = nbcpu, MaxRAM = maxram, Index_Alpha = index_alpha, nbclusters = nbclusters, FullRes = TRUE, LowRes = FALSE, MapSTD = FALSE) | |
93 | |
94 alpha_zip <- file.path(output_dir, image_name, typepca, "ALPHA", "Shannon_10_Fullres.zip") | |
95 alpha_path <- file.path(output_dir, image_name, typepca, "ALPHA") | |
96 unzip(alpha_zip, exdir = alpha_path) | |
97 alpha_path <- file.path(output_dir, image_name, typepca, "ALPHA", "Shannon_10_Fullres") | |
98 alpha_raster <- raster::raster(alpha_path) | |
99 get_alpha <- convert_raster(alpha_raster) | |
100 | |
101 if (alpha == TRUE || all == TRUE) { | |
102 colnames(get_alpha) <- c("Alpha", "longitude", "latitude") | |
103 plot_indices(get_alpha, titre = "Alpha") | |
104 | |
105 write.table(get_alpha, file = "alpha.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) | |
106 } | |
107 if (beta == TRUE || all == TRUE) { | |
108 ## beta | |
109 print("MAP BETA DIVERSITY") | |
110 beta_div <- biodivMapR::map_beta_div(Input_Image_File = input_image_file, Output_Dir = output_dir, TypePCA = typepca, window_size = window_size, nb_partitions = nb_partitions, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters) | |
111 | |
112 beta_path <- file.path(output_dir, image_name, typepca, "BETA", "BetaDiversity_BCdiss_PCO_10") | |
113 beta_raster <- raster::raster(beta_path) | |
114 get_beta <- convert_raster(beta_raster) | |
115 | |
116 colnames(get_beta) <- c("Beta", "longitude", "latitude") | |
117 plot_indices(get_beta, titre = "Beta") | |
118 | |
119 write.table(get_beta, file = "beta.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) | |
120 } | |
121 } | |
122 | |
123 | |
124 ################################################################################ | |
125 ## COMPUTE ALPHA AND BETA DIVERSITY FROM FIELD PLOTS ## | |
126 ################################################################################ | |
127 | |
128 if (funct == TRUE || all == TRUE) { | |
129 mapper <- biodivMapR::map_functional_div(Original_Image_File = input_image_file, Functional_File = pca_files, Selected_Features = selected_pcs, Output_Dir = output_dir, window_size = window_size, nbCPU = nbcpu, MaxRAM = maxram, TypePCA = typepca, FullRes = TRUE, LowRes = FALSE, MapSTD = FALSE) | |
130 | |
131 funct_zip <- file.path(output_dir, image_name, typepca, "FUNCTIONAL", "FunctionalDiversity_Map_MeanFilter_Fullres.zip") | |
132 funct_path <- file.path(output_dir, image_name, typepca, "FUNCTIONAL") | |
133 unzip(funct_zip, exdir = funct_path) | |
134 funct_path <- file.path(output_dir, image_name, typepca, "FUNCTIONAL", "FunctionalDiversity_Map_MeanFilter_Fullres") | |
135 funct_raster <- raster::raster(funct_path) | |
136 get_funct <- convert_raster(funct_raster) | |
137 | |
138 colnames(get_funct) <- c("Functionnal", "longitude", "latitude") | |
139 plot_indices(get_funct, titre = "Functionnal") | |
140 | |
141 write.table(get_funct, file = "Functionnal.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) | |
142 } |