Mercurial > repos > ecology > srs_global_indices
diff prosail-master/R/Lib_PROSAIL_HybridInversion.R @ 0:5cae678042ec draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:36:33 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/prosail-master/R/Lib_PROSAIL_HybridInversion.R Mon Jan 09 13:36:33 2023 +0000 @@ -0,0 +1,554 @@ +# ============================================================================= = +# prosail +# Lib_PROSAIL_HybridInversion.R +# ============================================================================= = +# PROGRAMMERS: +# Jean-Baptiste FERET <jb.feret@teledetection.fr> +# Florian de BOISSIEU <fdeboiss@gmail.com> +# Copyright 2019 / 11 Jean-Baptiste FERET +# ============================================================================= = +# This Library includes functions dedicated to PROSAIL inversion using hybrid +# approach based on SVM regression +# ============================================================================= = + + +#" This function applies SVR model on raster data in order to estimate +#" vegetation biophysical properties +#" +#" @param raster_path character. path for a raster file +#" @param hybridmodel list. hybrid models produced from train_prosail_inversion +#" each element of the list corresponds to a set of hybrid models for a vegetation parameter +#" @param pathout character. path for directory where results are written +#" @param selectedbands list. list of spectral bands to be selected from raster (identified by name of vegetation parameter) +#" @param bandname character. spectral bands corresponding to the raster +#" @param maskraster character. path for binary mask defining ON (1) and OFF (0) pixels in the raster +#" @param multiplyingfactor numeric. multiplying factor used to write reflectance in the raster +#" --> PROSAIL simulates reflectance between 0 and 1, and raster data expected in the same range +#" +#" @return None +#" @importFrom progress progress_bar +#" @importFrom stars read_stars +#" @importFrom raster raster brick blockSize readStart readStop getValues writeStart writeStop writeValues +#" @import rgdal +#" @export +apply_prosail_inversion <- function(raster_path, hybridmodel, pathout, + selectedbands, bandname, + maskraster = FALSE, multiplyingfactor = 10000) { + + # explain which biophysical variables will be computed + bpvar <- names(hybridmodel) + print("The following biophysical variables will be computed") + print(bpvar) + + # get image dimensions + if (attr(rgdal::GDALinfo(raster_path, returnStats = FALSE), "driver") == "ENVI") { + hdr <- read_envi_header(get_hdr_name(raster_path)) + dimsraster <- list("rows" = hdr$lines, "cols" = hdr$samples, "bands" = hdr$bands) + } else { + dimsraster <- dim(read_stars(raster_path)) + dimsraster <- list("rows" = as.numeric(dimsraster[2]), "cols" = as.numeric(dimsraster[1]), "bands" = as.numeric(dimsraster[3])) + } + + # Produce a map for each biophysical property + for (parm in bpvar) { + print(paste("Computing", parm, sep = " ")) + # read by chunk to avoid memory problem + blk <- blockSize(brick(raster_path)) + # reflectance file + r_in <- readStart(brick(raster_path)) + # mask file + r_inmask <- FALSE + if (maskraster == FALSE) { + selectpixels <- "ALL" + } else if (!maskraster == FALSE) { + if (file.exists(maskraster)) { + r_inmask <- readStart(raster(maskraster)) + } else if (!file.exists(maskraster)) { + message("WARNING: Mask file does not exist:") + print(maskraster) + message("Processing all image") + selectpixels <- "ALL" + } + } + # initiate progress bar + pgbarlength <- length(hybridmodel[[parm]]) * blk$n + pb <- progress_bar$new( + format = "Hybrid inversion on raster [:bar] :percent in :elapsedfull, estimated time remaining :eta", + total = pgbarlength, clear = FALSE, width = 100) + + # output files + bpvarpath <- file.path(pathout, paste(basename(raster_path), parm, sep = "_")) + bpvarsdpath <- file.path(pathout, paste(basename(raster_path), parm, "STD", sep = "_")) + r_outmean <- writeStart(raster(raster_path), filename = bpvarpath, format = "ENVI", overwrite = TRUE) + r_outsd <- writeStart(raster(raster_path), filename = bpvarsdpath, format = "ENVI", overwrite = TRUE) + selbands <- match(selectedbands[[parm]], bandname) + + # loop over blocks + for (i in seq_along(blk$row)) { + # read values for block + # format is a matrix with rows the cells values and columns the layers + blockval <- getValues(r_in, row = blk$row[i], nrows = blk$nrows[i]) + fulllength <- dim(blockval)[1] + + if (typeof(r_inmask) == "logical") { + blockval <- blockval[, selbands] + # automatically filter pixels corresponding to negative values + selectpixels <- which(blockval[, 1] > 0) + blockval <- blockval[selectpixels, ] + } else if (typeof(r_inmask) == "S4") { + maskval <- getValues(r_inmask, row = blk$row[i], nrows = blk$nrows[i]) + selectpixels <- which(maskval == 1) + blockval <- blockval[selectpixels, selbands] + } + mean_estimatefull <- NA * vector(length = fulllength) + std_estimatefull <- NA * vector(length = fulllength) + if (length(selectpixels) > 0) { + blockval <- blockval / multiplyingfactor + modelsvr_estimate <- list() + for (modind in 1:seq_along(hybridmodel[[parm]])) { + pb$tick() + modelsvr_estimate[[modind]] <- predict(hybridmodel[[parm]][[modind]], blockval) + } + modelsvr_estimate <- do.call(cbind, modelsvr_estimate) + # final estimated value = mean parm value for all models + mean_estimate <- rowMeans(modelsvr_estimate) + # "uncertainty" = STD value for all models + std_estimate <- rowSds(modelsvr_estimate) + mean_estimatefull[selectpixels] <- mean_estimate + std_estimatefull[selectpixels] <- std_estimate + } else { + for (modind in 1:seq_along(hybridmodel[[parm]])) { + pb$tick() + } + } + r_outmean <- writeValues(r_outmean, mean_estimatefull, blk$row[i], format = "ENVI", overwrite = TRUE) + r_outsd <- writeValues(r_outsd, std_estimatefull, blk$row[i], format = "ENVI", overwrite = TRUE) + } + # close files + r_in <- readStop(r_in) + if (typeof(r_inmask) == "S4") { + r_inmask <- readStop(r_inmask) + } + r_outmean <- writeStop(r_outmean) + r_outsd <- writeStop(r_outsd) + # write biophysical variable name in headers + hdr <- read_envi_header(get_hdr_name(bpvarpath)) + hdr$`band names` <- paste("{", parm, "}", sep = "") + write_envi_header(hdr, get_hdr_name(bpvarpath)) + } + print("processing completed") + return(invisible()) +} + +#" get hdr name from image file name, assuming it is BIL format +#" +#" @param impath path of the image +#" +#" @return corresponding hdr +#" @importFrom tools file_ext file_path_sans_ext +#" @export +get_hdr_name <- function(impath) { + if (tools::file_ext(impath) == "") { + impathhdr <- paste(impath, ".hdr", sep = "") + } else if (tools::file_ext(impath) == "bil") { + impathhdr <- gsub(".bil", ".hdr", impath) + } else if (tools::file_ext(impath) == "zip") { + impathhdr <- gsub(".zip", ".hdr", impath) + } else { + impathhdr <- paste(tools::file_path_sans_ext(impath), ".hdr", sep = "") + } + + if (!file.exists(impathhdr)) { + message("WARNING : COULD NOT FIND hdr FILE") + print(impathhdr) + message("Process may stop") + } + return(impathhdr) +} + +#" This function applies the regression models trained with prosail_hybrid_train +#" +#" @param regressionmodels list. List of regression models produced by prosail_hybrid_train +#" @param refl numeric. LUT of bidirectional reflectances factors used for training +#" +#" @return hybridres list. Estimated values corresponding to refl. Includes +#" - meanestimate = mean value for the ensemble regression model +#" - stdestimate = std value for the ensemble regression model +#" @importFrom stats predict +#" @importFrom matrixStats rowSds +#" @importFrom progress progress_bar +#" @export + +prosail_hybrid_apply <- function(regressionmodels, refl) { + + # make sure refl is right dimensions + refl <- t(refl) + nbfeatures <- regressionmodels[[1]]$dim + if (!ncol(refl) == nbfeatures && nrow(refl) == nbfeatures) { + refl <- t(refl) + } + nbensemble <- length(regressionmodels) + estimatedval <- list() + pb <- progress_bar$new( + format = "Applying SVR models [:bar] :percent in :elapsed", + total = nbensemble, clear = FALSE, width = 100) + for (i in 1:nbensemble) { + pb$tick() + estimatedval[[i]] <- predict(regressionmodels[[i]], refl) + } + estimatedval <- do.call(cbind, estimatedval) + meanestimate <- rowMeans(estimatedval) + stdestimate <- rowSds(estimatedval) + hybridres <- list("meanestimate" = meanestimate, "stdestimate" = stdestimate) + return(hybridres) +} + +#" This function trains a suppot vector regression for a set of variables based on spectral data +#" +#" @param brf_lut numeric. LUT of bidirectional reflectances factors used for training +#" @param inputvar numeric. biophysical parameter corresponding to the reflectance +#" @param figplot Boolean. Set to TRUE if you want a scatterplot +#" @param nbensemble numeric. Number of individual subsets should be generated from brf_lut +#" @param withreplacement Boolean. should subsets be generated with or without replacement? +#" +#" @return modelssvr list. regression models trained for the retrieval of inputvar based on brf_lut +#" @importFrom liquidSVM svmRegression +#" @importFrom stats predict +#" @importFrom progress progress_bar +#" @importFrom graphics par +#" @importFrom expandFunctions reset.warnings +#" @importFrom stringr str_split +#" @importFrom simsalapar tryCatch.W.E +#" @import dplyr +#" @import ggplot2 +# @" @import caret +#" @export + +prosail_hybrid_train <- function(brf_lut, inputvar, figplot = FALSE, nbensemble = 20, withreplacement = FALSE) { + + x <- y <- ymean <- ystdmin <- ystdmax <- NULL + # split the LUT into nbensemble subsets + nbsamples <- length(inputvar) + if (dim(brf_lut)[2] == nbsamples) { + brf_lut <- t(brf_lut) + } + + # if subsets are generated from brf_lut with replacement + if (withreplacement == TRUE) { + subsets <- list() + samples_per_run <- round(nbsamples / nbensemble) + for (run in (1:nbensemble)) { + subsets[[run]] <- sample(seq(1, nbsamples), samples_per_run, replace = TRUE) + } + # if subsets are generated from brf_lut without replacement + } else if (withreplacement == FALSE) { + subsets <- split(sample(seq(1, nbsamples, by = 1)), seq(1, nbensemble, by = 1)) + } + + # run training for each subset + modelssvr <- list() + predictedyall <- list() + tunedmodelyall <- list() + pb <- progress_bar$new( + format = "Training SVR on subsets [:bar] :percent in :elapsed", + total = nbensemble, clear = FALSE, width = 100) + for (i in 1:nbensemble) { + pb$tick() + Sys.sleep(1 / 100) + trainingset <- list() + trainingset$X <- brf_lut[subsets[i][[1]], ] + trainingset$Y <- inputvar[subsets[i][[1]]] + # liquidSVM + r1 <- tryCatch.W.E(tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y)) + if (!is.null(r1$warning)) { + msg <- r1$warning$message + valgamma <- str_split(string = msg, pattern = "gamma=")[[1]][2] + vallambda <- str_split(string = msg, pattern = "lambda=")[[1]][2] + if (!is.na(as.numeric(valgamma))) { + message("Adjusting Gamma accordingly") + valgamma <- as.numeric(valgamma) + tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y, min_gamma = valgamma) + } + if (!is.na(as.numeric(vallambda))) { + message("Adjusting Lambda accordingly") + vallambda <- as.numeric(vallambda) + tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y, min_lambda = vallambda) + } + } + modelssvr[[i]] <- tunedmodel + } + + # if scatterplots needed + if (figplot == TRUE) { + # predict for full brf_lut + for (i in 1:nbensemble) { + tunedmodely <- stats::predict(modelssvr[[i]], brf_lut) + tunedmodelyall <- cbind(tunedmodelyall, matrix(tunedmodely, ncol = 1)) + } + # plot prediction + df <- data.frame(x = rep(1:nbsamples, nbensemble), y = as.numeric(matrix(tunedmodelyall, ncol = 1))) + df_summary <- df %>% + dplyr::group_by(x) %>% + summarize(ymin = min(y), ystdmin = mean(y) - sd(y), + ymax = max(y), ystdmax = mean(y) + sd(y), + ymean = mean(y)) + par(mar = rep(.1, 4)) + p <- ggplot(df_summary, aes(x = inputvar, y = ymean)) + + geom_point(size = 2) + + geom_errorbar(aes(ymin = ystdmin, ymax = ystdmax)) + meanpredict <- rowMeans(matrix(as.numeric(tunedmodelyall), ncol = nbensemble)) + print(p) + } + return(modelssvr) +} + +#" Reads ENVI hdr file +#" +#" @param hdrpath Path of the hdr file +#" +#" @return list of the content of the hdr file +#" @export +read_envi_header <- function(hdrpath) { + if (!grepl(".hdr$", hdrpath)) { + stop("File extension should be .hdr") + } + hdr <- readLines(hdrpath) + ## check ENVI at beginning of file + if (!grepl("ENVI", hdr[1])) { + stop("Not an ENVI header (ENVI keyword missing)") + } else { + hdr <- hdr [-1] + } + ## remove curly braces and put multi-line key-value-pairs into one line + hdr <- gsub("\\{([^}]*)\\}", "\\1", hdr) + l <- grep("\\{", hdr) + r <- grep("\\}", hdr) + + if (length(l) != length(r)) { + stop("Error matching curly braces in header (differing numbers).") + } + + if (any(r <= l)) { + stop("Mismatch of curly braces in header.") + } + + hdr[l] <- sub("\\{", "", hdr[l]) + hdr[r] <- sub("\\}", "", hdr[r]) + + for (i in rev(seq_along(l))) { + hdr <- c( + hdr [seq_len(l [i] - 1)], + paste(hdr [l [i]:r [i]], collapse = "\n"), + hdr [-seq_len(r [i])] + ) + } + + ## split key = value constructs into list with keys as names + hdr <- sapply(hdr, split_line, " = ", USE.NAMES = FALSE) + names(hdr) <- tolower(names(hdr)) + + ## process numeric values + tmp <- names(hdr) %in% c( + "samples", "lines", "bands", "header offset", "data type", + "byte order", "default bands", "data ignore value", + "wavelength", "fwhm", "data gain values" + ) + hdr [tmp] <- lapply(hdr [tmp], function(x) { + as.numeric(unlist(strsplit(x, ","))) + }) + + return(hdr) +} + +#" ENVI functions +#" +#" based on https: / / github.com / cran / hyperSpec / blob / master / R / read.ENVI.R +#" added wavelength, fwhm, ... to header reading +#" Title +#" +#" @param x character. +#" @param separator character +#" @param trim_blank boolean. +#" +#" @return list. +#" @export +split_line <- function(x, separator, trim_blank = TRUE) { + tmp <- regexpr(separator, x) + key <- substr(x, 1, tmp - 1) + value <- substr(x, tmp + 1, nchar(x)) + if (trim_blank) { + blank_pattern <- "^[[:blank:]]*([^[:blank:]] + .*[^[:blank:]] + )[[:blank:]]*$" + key <- sub(blank_pattern, "\\1", key) + value <- sub(blank_pattern, "\\1", value) + } + value <- as.list(value) + names(value) <- key + return(value) +} + +#" This function performs full training for hybrid invrsion using SVR with +#" values for default parameters +#" +#" @param minval list. minimum value for input parameters sampled to produce a training LUT +#" @param maxval list. maximum value for input parameters sampled to produce a training LUT +#" @param typedistrib list. Type of distribution. Either "Uniform" or "Gaussian" +#" @param gaussiandistrib list. Mean value and STD corresponding to the parameters sampled with gaussian distribution +#" @param parmset list. list of input parameters set to a specific value +#" @param nbsamples numeric. number of samples in training LUT +#" @param nbsamplesperrun numeric. number of training sample per individual regression model +#" @param nbmodels numeric. number of individual models to be run for ensemble +#" @param replacement bolean. is there replacement in subsampling? +#" @param sailversion character. Either 4SAIL or 4SAIL2 +#" @param parms2estimate list. list of input parameters to be estimated +#" @param bands2select list. list of bands used for regression for each input parameter +#" @param noiselevel list. list of noise value added to reflectance (defined per input parm) +#" @param specprospect list. Includes optical constants required for PROSPECT +#" @param specsoil list. Includes either dry soil and wet soil, or a unique soil sample if the psoil parameter is not inverted +#" @param specatm list. Includes direct and diffuse radiation for clear conditions +#" @param path_results character. path for results +#" @param figplot boolean. Set TRUE to get scatterplot of estimated biophysical variable during training step +#" @param force4lowlai boolean. Set TRUE to artificially reduce leaf chemical constituent content for low LAI +#" +#" +#" @return modelssvr list. regression models trained for the retrieval of inputvar based on brf_lut +#" @export + +train_prosail_inversion <- function(minval = NULL, maxval = NULL, + typedistrib = NULL, gaussiandistrib = NULL, parmset = NULL, + nbsamples = 2000, nbsamplesperrun = 100, nbmodels = 20, replacement = TRUE, + sailversion = "4SAIL", + parms2estimate = "lai", bands2select = NULL, noiselevel = NULL, + specprospect = NULL, specsoil = NULL, specatm = NULL, + path_results = "./", figplot = FALSE, force4lowlai = TRUE) { + + ###===================================================================### + ### 1- PRODUCE A LUT TO TRAIN THE HYBRID INVERSION ### + ###===================================================================### + # Define sensor characteristics + if (is.null(specprospect)) { + specprospect <- prosail::specprospect + } + if (is.null(specsoil)) { + specsoil <- prosail::specsoil + } + if (is.null(specprospect)) { + specatm <- prosail::specatm + } + # define distribution for parameters to be sampled + if (is.null(typedistrib)) { + typedistrib <- data.frame("CHL" = "Uniform", "CAR" = "Uniform", "EWT" = "Uniform", "ANT" = "Uniform", "LMA" = "Uniform", "N" = "Uniform", "BROWN" = "Uniform", + "psoil" = "Uniform", "LIDFa" = "Uniform", "lai" = "Uniform", "q" = "Uniform", "tto" = "Uniform", "tts" = "Uniform", "psi" = "Uniform") + } + if (is.null(gaussiandistrib)) { + gaussiandistrib <- list("Mean" = NULL, "Std" = NULL) + } + if (is.null(minval)) { + minval <- data.frame("CHL" = 10, "CAR" = 0, "EWT" = 0.01, "ANT" = 0, "LMA" = 0.005, "N" = 1.0, "psoil" = 0.0, "BROWN" = 0.0, + "LIDFa" = 20, "lai" = 0.5, "q" = 0.1, "tto" = 0, "tts" = 20, "psi" = 80) + } + if (is.null(maxval)) { + maxval <- data.frame("CHL" = 75, "CAR" = 15, "EWT" = 0.03, "ANT" = 2, "LMA" = 0.03, "N" = 2.0, "psoil" = 1.0, "BROWN" = 0.5, + "LIDFa" = 70, "lai" = 7, "q" = 0.2, "tto" = 5, "tts" = 30, "psi" = 110) + } + # define min and max values + # fixed parameters + if (is.null(parmset)) { + parmset <- data.frame("TypeLidf" = 2, "alpha" = 40) + } + # produce input parameters distribution + if (sailversion == "4SAIL") { + inputprosail <- get_distribution_input_prosail(minval, maxval, parmset, nbsamples, + typedistrib = typedistrib, + Mean = gaussiandistrib$Mean, Std = gaussiandistrib$Std, + force4lowlai = force4lowlai) + } else if (sailversion == "4SAIL2") { + inputprosail <- get_distribution_input_prosail2(minval, maxval, parmset, nbsamples, + typedistrib = typedistrib, + Mean = gaussiandistrib$Mean, Std = gaussiandistrib$Std, + force4lowlai = force4lowlai) + } + if (sailversion == "4SAIL2") { + # Definition of Cv && update LAI + maxlai <- min(c(maxval$lai), 4) + inputprosail$Cv <- NA * inputprosail$lai + inputprosail$Cv[which(inputprosail$lai > maxlai)] <- 1 + inputprosail$Cv[which(inputprosail$lai <= maxlai)] <- (1 / maxlai) + inputprosail$lai[which(inputprosail$lai <= maxlai)] / (maxlai + 1) + inputprosail$Cv <- inputprosail$Cv * matrix(rnorm(length(inputprosail$Cv), mean = 1, sd = 0.1)) + inputprosail$Cv[which(inputprosail$Cv < 0)] <- 0 + inputprosail$Cv[which(inputprosail$Cv > 1)] <- 1 + inputprosail$Cv[which(inputprosail$lai > maxlai)] <- 1 + inputprosail$fraction_brown <- 0 + 0 * inputprosail$lai + inputprosail$diss <- 0 + 0 * inputprosail$lai + inputprosail$Zeta <- 0.2 + 0 * inputprosail$lai + inputprosail$lai <- inputprosail$lai * inputprosail$Cv + } + + # generate LUT of BRF corresponding to inputprosail, for a sensor + brf_lut <- Generate_LUT_BRF(sailversion = sailversion, inputprosail = inputprosail, + specprospect = specprospect, specsoil = specsoil, specatm = specatm) + + # write parameters LUT + output <- matrix(unlist(inputprosail), ncol = length(inputprosail), byrow = FALSE) + filename <- file.path(path_results, "PROSAIL_LUT_InputParms.txt") + write.table(x = format(output, digits = 3), file = filename, append = FALSE, quote = FALSE, + col.names = names(inputprosail), row.names = FALSE, sep = "\t") + # Write BRF LUT corresponding to parameters LUT + filename <- file.path(path_results, "PROSAIL_LUT_reflectance.txt") + write.table(x = format(t(brf_lut), digits = 5), file = filename, append = FALSE, quote = FALSE, + col.names = specprospect$lambda, row.names = FALSE, sep = "\t") + + # Which bands will be used for inversion? + if (is.null(bands2select)) { + bands2select <- list() + for (parm in parms2estimate) { + bands2select[[parm]] <- seq(1, length(specprospect$lambda)) + } + } + # Add gaussian noise to reflectance LUT: one specific LUT per parameter + if (is.null(noiselevel)) { + noiselevel <- list() + for (parm in parms2estimate) { + noiselevel[[parm]] <- 0.01 + } + } + + # produce LIT with noise + brf_lut_noise <- list() + for (parm in parms2estimate) { + brf_lut_noise[[parm]] <- brf_lut[bands2select[[parm]], ] + brf_lut[bands2select[[parm]], ] * matrix(rnorm(nrow(brf_lut[bands2select[[parm]], ]) * ncol(brf_lut[bands2select[[parm]], ]), + 0, noiselevel[[parm]]), nrow = nrow(brf_lut[bands2select[[parm]], ])) + } + + ###===================================================================### + ### PERFORM HYBRID INVERSION ### + ###===================================================================### + # train SVR for each variable and each run + modelsvr <- list() + for (parm in parms2estimate) { + colparm <- which(parm == names(inputprosail)) + inputvar <- inputprosail[[colparm]] + modelsvr[[parm]] <- prosail_hybrid_train(brf_lut = brf_lut_noise[[parm]], inputvar = inputvar, + figplot = figplot, nbensemble = nbmodels, withreplacement = replacement) + } + return(modelsvr) +} + +#" writes ENVI hdr file +#" +#" @param hdr content to be written +#" @param hdrpath Path of the hdr file +#" +#" @return None +#" @importFrom stringr str_count +#" @export +write_envi_header <- function(hdr, hdrpath) { + h <- lapply(hdr, function(x) { + if (length(x) > 1 || (is.character(x) && stringr::str_count(x, "\\w + ") > 1)) { + x <- paste0("{", paste(x, collapse = ","), "}") + } + # convert last numerics + x <- as.character(x) + }) + writeLines(c("ENVI", paste(names(hdr), h, sep = "=")), con = hdrpath) + return(invisible()) +}