Mercurial > repos > ecology > srs_global_indices
view biodiv_indices_global.r @ 0:5cae678042ec draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:36:33 +0000 |
parents | |
children |
line wrap: on
line source
#Rscript ########################################### ## Mapping biodiversity indicators ## ########################################### #####Packages : raster, # rgdal, # sp, # rasterdiv, # ggplot2, #####Load arguments args <- commandArgs(trailingOnly = TRUE) #####Import the S2 data if (length(args) < 1) { stop("This tool needs at least 1 argument") }else { data_raster <- args[1] data_header <- args[2] data <- args[3] alpha <- as.numeric(args[4]) source(args[5]) } ######################################################################## ## COMPUTE BIODIVERSITY INDICES ## ######################################################################## if (data_raster == "") { #Create a directory where to unzip your folder of data dir.create("data_dir") unzip(data, exdir = "data_dir") # Path to raster data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") data_raster <- file.path("data_dir/results/Reflectance", data_raster[1]) } # Read raster copndvi <- raster::raster(data_raster) copndvilr <- raster::reclassify(copndvi, cbind(252, 255, NA), right = TRUE) #Resample using raster::aggregate and a linear factor of 10 copndvilr <- raster::aggregate(copndvilr, fact = 20) #Set float numbers as integers to further speed up the calculation storage.mode(copndvilr[]) <- "integer" # Convert raster to SpatialPointsDataFrame r_pts <- convert_raster(copndvilr) #Shannon's Diversity sha <- rasterdiv::Shannon(copndvilr, window = 9, np = 1) sha_df <- data.frame(raster::rasterToPoints(sha, spatial = TRUE)) sha_name <- "Shannon" r_pts[, sha_name] <- sha_df[, 1] #Renyi's Index ren <- rasterdiv::Renyi(copndvilr, window = 9, alpha = alpha, np = 1) ren_df <- data.frame(raster::rasterToPoints(ren[[1]])) ren_name <- "Renyi" r_pts[, ren_name] <- ren_df[, 3] #Berger-Parker's Index ber <- rasterdiv::BergerParker(copndvilr, window = 9, np = 1) ber_df <- data.frame(raster::rasterToPoints(ber, spatial = TRUE)) ber_name <- "Berger-Parker" r_pts[, ber_name] <- ber_df[, 1] #Pielou's Evenness pie <- rasterdiv::Pielou(copndvilr, window = 9, np = 1) pie_df <- data.frame(raster::rasterToPoints(pie)) if (length(pie_df[, 1]) == length(r_pts[, 1])) { pie_name <- "Pielou" r_pts[, pie_name] <- pie_df[, 1] } #Hill's numbers hil <- rasterdiv::Hill(copndvilr, window = 9, alpha = alpha, np = 1) hil_df <- data.frame(raster::rasterToPoints(hil[[1]])) hil_name <- "Hill" r_pts[, hil_name] <- hil_df[, 3] #Parametric Rao's quadratic entropy with alpha ranging from 1 to 5 prao <- rasterdiv::paRao(copndvilr, window = 9, alpha = alpha, dist_m = "euclidean", np = 1) prao_df <- data.frame(raster::rasterToPoints(prao$window.9[[1]])) prao_name <- "Prao" r_pts[, prao_name] <- prao_df[, 3] #Cumulative Residual Entropy cre <- rasterdiv::CRE(copndvilr, window = 9, np = 1) cre_df <- data.frame(raster::rasterToPoints(cre)) if (length(cre_df[, 1]) == length(r_pts[, 1])) { cre_name <- "CRE" r_pts[, cre_name] <- cre_df[, 1] } if (length(cre_df[, 1]) == length(r_pts[, 1]) || length(pie_df[, 1]) == length(r_pts[, 1])) { list_indice <- list("Shannon", "Renyi", "Berger-Parker", "Pielou", "Hill", "Prao", "CRE") } else { list_indice <- list("Shannon", "Renyi", "Berger-Parker", "Hill", "Prao") } ## Plotting all the graph and writing a tabular for (indice in list_indice) { plot_indices(data = r_pts, titre = indice) } write.table(r_pts, file = "BiodivIndex.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE)