Mercurial > repos > ecology > srs_global_indices
view functions.r @ 0:5cae678042ec draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:36:33 +0000 |
parents | |
children |
line wrap: on
line source
#Rscript ######################### ## Functions ## ######################### #####Packages : raster # sp # ggplot2 ####Set paramaters for all tools using BiodivMapR # path for the Mask raster corresponding to image to process # expected to be in ENVI HDR format, 1 band, integer 8bits # expected values in the raster: 0 = masked, 1 = selected # set to FALSE if no mask available input_mask_file <- FALSE # relative or absolute path for the Directory where results will be stored # For each image processed, a subdirectory will be created after its name output_dir <- "RESULTS" # SPATIAL RESOLUTION # resolution of spatial units for alpha and beta diversity maps (in pixels), relative to original image # if Res.Map = 10 for images with 10 m spatial resolution, then spatial units will be 10 pixels x 10m = 100m x 100m surfaces # rule of thumb: spatial units between 0.25 and 4 ha usually match with ground data # too small window_size results in low number of pixels per spatial unit, hence limited range of variation of diversity in the image window_size <- 10 # PCA FILTERING: Set to TRUE if you want second filtering based on PCA outliers to be processed. Slower filterpca <- TRUE ################################################################################ ## DEFINE PARAMETERS FOR METHOD ## ################################################################################ nbcpu <- 4 maxram <- 0.5 nbclusters <- 50 ################################################################################ ## PROCESS IMAGE ## ################################################################################ # 1- Filter data in order to discard non vegetated / shaded / cloudy pixels ndvi_thresh <- 0.5 blue_thresh <- 500 nir_thresh <- 1500 continuum_removal <- TRUE #### Convert raster to dataframe # Convert raster to SpatialPointsDataFrame convert_raster <- function(data_raster) { r_pts <- raster::rasterToPoints(data_raster, spatial = TRUE) # reproject sp object geo_prj <- "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" r_pts <- sp::spTransform(r_pts, sp::CRS(geo_prj)) # Assign coordinates to @data slot, display first 6 rows of data.frame r_pts@data <- data.frame(r_pts@data, longitude = sp::coordinates(r_pts)[, 1], latitude = sp::coordinates(r_pts)[, 2]) return(r_pts@data) } #### Potting indices plot_indices <- function(data, titre) { graph_indices <- ggplot2::ggplot(data) + ggplot2::geom_point(ggplot2::aes_string(x = data[, 2], y = data[, 3], color = data[, titre]), shape = "square", size = 2) + ggplot2::scale_colour_gradient(low = "blue", high = "orange", na.value = "grey50") + ggplot2::xlab("Longitude") + ggplot2::ylab("Latitude") + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), plot.title = ggplot2::element_text(color = "black", size = 12, face = "bold")) + ggplot2::ggtitle(titre) ggplot2::ggsave(paste0(titre, ".png"), graph_indices, width = 12, height = 10, units = "cm") }