Mercurial > repos > ecology > srs_global_indices
view prosail-master/R/Lib_PROSAIL.R @ 0:5cae678042ec draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:36:33 +0000 |
parents | |
children |
line wrap: on
line source
# ============================================================================= = # prosail # Lib_PROSAIL.R # ============================================================================= = # PROGRAMMERS: # Jean-Baptiste FERET <jb.feret@teledetection.fr > # Florian de BOISSIEU <fdeboiss@gmail.com > # copyright 2019 / 11 Jean-Baptiste FERET # ============================================================================= = # This Library includes functions dedicated to PROSAIL simulation # SAIL versions available are 4SAIL and 4SAIL2 # ============================================================================= = #" computes bidirectional reflectance factor based on outputs from PROSAIL and sun position #" #" The direct and diffuse light are taken into account as proposed by: #" Francois et al. (2002) conversion of 400-1100 nm vegetation albedo #" measurements into total shortwave broadband albedo using a canopy #" radiative transfer model, Agronomie #" Es = direct #" Ed = diffuse #" #" @param rdot numeric. Hemispherical-directional reflectance factor in viewing direction #" @param rsot numeric. Bi-directional reflectance factor #" @param tts numeric. Solar zenith angle #" @param specatm_sensor list. direct and diffuse radiation for clear conditions #" @return brf numeric. Bidirectional reflectance factor #" @export compute_brf <- function(rdot, rsot, tts, specatm_sensor) { ############################## # ## direct / diffuse light ## ############################## # es <- specatm_sensor$Direct_Light ed <- specatm_sensor$Diffuse_Light rd <- pi / 180 skyl <- 0.847 - 1.61 * sin((90 - tts) * rd) + 1.04 * sin((90 - tts) * rd) * sin((90 - tts) * rd) # diffuse radiation (Francois et al., 2002) pardiro <- (1 - skyl) * es pardifo <- skyl * ed brf <- (rdot * pardifo + rsot * pardiro) / (pardiro + pardifo) return(brf) } #" Performs PROSAIL simulation based on a set of combinations of input parameters #" @param spec_sensor list. Includes optical constants required for PROSPECT #" refractive index, specific absorption coefficients and corresponding spectral bands #" @param input_prospect list. PROSPECT input variables #" @param n numeric. Leaf structure parameter #" @param chl numeric. chlorophyll content (microg.cm-2) #" @param car numeric. carotenoid content (microg.cm-2) #" @param ant numeric. anthocyain content (microg.cm-2) #" @param brown numeric. brown pigment content (Arbitrary units) #" @param ewt numeric. Equivalent Water Thickness (g.cm-2) #" @param lma numeric. Leaf Mass per Area (g.cm-2) #" @param prot numeric. protein content (g.cm-2) #" @param cbc numeric. nonprotcarbon-based constituent content (g.cm-2) #" @param alpha numeric. Solid angle for incident light at surface of leaf (simulation of roughness) #" @param typelidf numeric. Type of leaf inclination distribution function #" @param lidfa numeric. #" if typelidf == 1, controls the average leaf slope #" if typelidf == 2, corresponds to average leaf angle #" @param lidfb numeric. #" if typelidf == 1, unused #" if typelidf == 2, controls the distribution"s bimodality #" @param lai numeric. Leaf Area Index #" @param q numeric. Hot Spot parameter #" @param tts numeric. Sun zeith angle #" @param tto numeric. Observer zeith angle #" @param psi numeric. Azimuth Sun / Observer #" @param rsoil numeric. Soil reflectance #" @param fraction_brown numeric. Fraction of brown leaf area #" @param diss numeric. Layer dissociation factor #" @param cv numeric. vertical crown cover percentage #" = % ground area covered with crowns as seen from nadir direction #" @param zeta numeric. Tree shape factor #" = ratio of crown diameter to crown height #" @param sailversion character. choose between 4SAIL and 4SAIL2 #" @param brownvegetation list. Defines optical properties for brown vegetation, if not nULL #" - WVL, reflectance, Transmittance #" - Set to nULL if use PROSPECT to generate it #" #" @return list. rdot, rsot, rddt, rsdt #" rdot: hemispherical-directional reflectance factor in viewing direction #" rsot: bi-directional reflectance factor #" rsdt: directional-hemispherical reflectance factor for solar incident flux #" rddt: bi-hemispherical reflectance factor #" @import prospect #" @export pro4sail <- function(spec_sensor, input_prospect = nULL, n = 1.5, chl = 40.0, car = 8.0, ant = 0.0, brown = 0.0, ewt = 0.01, lma = 0.008, prot = 0.0, cbc = 0.0, alpha = 40.0, typelidf = 2, lidfa = nULL, lidfb = nULL, lai = nULL, q = nULL, tts = nULL, tto = nULL, psi = nULL, rsoil = nULL, fraction_brown = 0.0, diss = 0.0, cv = 1, zeta = 1, sailversion = "4SAIL", brownvegetation = nULL) { ############################ # # LEAF OPTICAL PROPERTIES ## ############################ # if (is.null(input_prospect)) { input_prospect <- data.frame("chl" = chl, "car" = car, "ant" = ant, "brown" = brown, "ewt" = ewt, "lma" = lma, "prot" = prot, "cbc" = cbc, "n" = n, "alpha" = alpha) } greenvegetation <- prospect::PROSPECT(SpecPROSPECT = spec_sensor, n = input_prospect$n[1], chl = input_prospect$chl[1], car = input_prospect$car[1], ant = input_prospect$ant[1], brown = input_prospect$brown[1], ewt = input_prospect$ewt[1], lma = input_prospect$lma[1], prot = input_prospect$prot[1], cbc = input_prospect$cbc[1], alpha = input_prospect$alpha[1]) if (sailversion == "4SAIL2") { # 4SAIL2 requires one of the following combination of input parameters # Case #1: valid optical properties for brown vegetation if (!is.null(brownvegetation)) { # need to define reflectance and Transmittance for brownvegetation if (length(grep("reflectance", names(brownvegetation))) == 0 || length(grep("Transmittance", names(brownvegetation))) == 0) { message("Please define brownvegetation as a list including reflectance and Transmittance") stop() } # check if spectral domain for optical properties of brown vegetation match # with spectral domain for optical properties of green vegetation if (length(setdiff(spec_sensor$lambda, brownvegetation$wvl)) > 0) { message("Please define same spectral domain for brownvegetation and SpecPROSPECT") stop() } if (length(unique(lengths(input_prospect))) == 1) { if (!unique(lengths(input_prospect)) == 1) { message("brownvegetation defined along with multiple leaf chemical properties") message("Only first set of leaf chemical properties will be used to simulate green vegetation") } } # if no leaf optical properties brown vegetation defined } else if (is.null(brownvegetation)) { # if all PROSPECT input parameters have the same length if (length(unique(lengths(input_prospect))) == 1) { # if all PROSPECT input parameters are unique (no possibility to simulate 2 types of leaf optics) if (unique(lengths(input_prospect)) == 1) { # if fraction_brown set to 0, then assign green vegetation optics to brown vegetation optics if (fraction_brown == 0) { brownvegetation <- greenvegetation # else run 4SAIL } else { message("4SAIL2 needs two sets of optical properties for green and brown vegetation") message("Currently one set is defined. will run 4SAIL instead of 4SAIL2") sailversion <- "4SAIL" } # if all PROSPECT parameters have at least 2 elements } else if (unique(lengths(input_prospect)) >= 2) { # compute leaf optical properties brownvegetation <- prospect::PROSPECT(SpecPROSPECT = spec_sensor, n = input_prospect$n[2], chl = input_prospect$chl[2], car = input_prospect$car[2], ant = input_prospect$ant[2], brown = input_prospect$brown[2], ewt = input_prospect$ewt[2], lma = input_prospect$lma[2], prot = input_prospect$prot[2], cbc = input_prospect$cbc[2], alpha = input_prospect$alpha[2]) if (unique(lengths(input_prospect)) > 2) { message("4SAIL2 needs two sets of optical properties for green and brown vegetation") message("Currently more than 2 sets are defined. will only use the first 2") } } } } } if (sailversion == "4SAIL") { if (length(unique(lengths(input_prospect))) == 1) { if (unique(lengths(input_prospect)) > 1) { message("4SAIL needs only one set of optical properties") message("Currently more than one set of leaf chemical constituents is defined.") message("Will run 4SAIL with the first set of leaf chemical constituents") } } } if (sailversion == "4SAIL") { # run 4SAIL ref <- foursail(leafoptics = greenvegetation, typelidf, lidfa, lidfb, lai, q, tts, tto, psi, rsoil) } else if (sailversion == "4SAIL2") { # run 4SAIL2 ref <- foursail2(leafgreen = greenvegetation, leafbrown = brownvegetation, typelidf, lidfa, lidfb, lai, q, tts, tto, psi, rsoil, fraction_brown, diss, cv, zeta) } return(ref) } #" Performs PROSAIL simulation based on a set of combinations of input parameters #" @param leafoptics list. Includes leaf optical properties (reflectance and transmittance) #" and corresponding spectral bands #" @param typelidf numeric. Type of leaf inclination distribution function #" @param lidfa numeric. #" if typelidf == 1, controls the average leaf slope #" if typelidf == 2, corresponds to average leaf angle #" @param lidfb numeric. #" if typelidf == 1, unused #" if typelidf == 2, controls the distribution"s bimodality #" @param lai numeric. Leaf Area Index #" @param q numeric. Hot Spot parameter #" @param tts numeric. Sun zeith angle #" @param tto numeric. Observer zeith angle #" @param psi numeric. Azimuth Sun / Observer #" @param rsoil numeric. Soil reflectance #" #" @return list. rdot, rsot, rddt, rsdt #" rdot: hemispherical-directional reflectance factor in viewing direction #" rsot: bi-directional reflectance factor #" rsdt: directional-hemispherical reflectance factor for solar incident flux #" rddt: bi-hemispherical reflectance factor #" @export foursail <- function(leafoptics, typelidf = 2, lidfa = nULL, lidfb = nULL, lai = nULL, q = nULL, tts = nULL, tto = nULL, psi = nULL, rsoil = nULL) { ############################## # # LEAF OPTICAL PROPERTIES ## ############################## # rho <- leafoptics$Reflectance tau <- leafoptics$Transmittance # Geometric quantities rd <- pi / 180 cts <- cos(rd * tts) cto <- cos(rd * tto) ctscto <- cts * cto tants <- tan(rd * tts) tanto <- tan(rd * tto) cospsi <- cos(rd * psi) dso <- sqrt(tants * tants + tanto * tanto - 2. * tants * tanto * cospsi) # Generate leaf angle distribution from average leaf angle (ellipsoidal) or (a, b) parameters if (typelidf == 1) { foliar_distrib <- dladgen(lidfa, lidfb) lidf <- foliar_distrib$lidf litab <- foliar_distrib$litab } else if (typelidf == 2) { foliar_distrib <- campbell(lidfa) lidf <- foliar_distrib$lidf litab <- foliar_distrib$litab } # angular distance, compensation of shadow length # Calculate geometric factors associated with extinction and scattering # Initialise sums ks <- 0 ko <- 0 bf <- 0 sob <- 0 sof <- 0 # Weighted sums over LIDF na <- length(litab) for (i in 1:na) { ttl <- litab[i] # leaf inclination discrete values ctl <- cos(rd * ttl) # SAIL volume scattering phase function gives interception and portions to be # multiplied by rho and tau resvolscatt <- volscatt(tts, tto, psi, ttl) chi_s <- resvolscatt$chi_s chi_o <- resvolscatt$chi_o frho <- resvolscatt$frho ftau <- resvolscatt$ftau #******************************************************************************** #* SUITS SYSTEM coEFFICIEnTS #* #* ks : Extinction coefficient for direct solar flux #* ko : Extinction coefficient for direct observed flux #* att : Attenuation coefficient for diffuse flux #* sigb : Backscattering coefficient of the diffuse downward flux #* sigf : Forwardscattering coefficient of the diffuse upward flux #* sf : Scattering coefficient of the direct solar flux for downward diffuse flux #* sb : Scattering coefficient of the direct solar flux for upward diffuse flux #* vf : Scattering coefficient of upward diffuse flux in the observed direction #* vb : Scattering coefficient of downward diffuse flux in the observed direction #* w : Bidirectional scattering coefficient #******************************************************************************** # Extinction coefficients ksli <- chi_s / cts koli <- chi_o / cto # Area scattering coefficient fractions sobli <- frho * pi / ctscto sofli <- ftau * pi / ctscto bfli <- ctl * ctl ks <- ks + ksli * lidf[i] ko <- ko + koli * lidf[i] bf <- bf + bfli * lidf[i] sob <- sob + sobli * lidf[i] sof <- sof + sofli * lidf[i] } # Geometric factors to be used later with rho and tau sdb <- 0.5 * (ks + bf) sdf <- 0.5 * (ks - bf) dob <- 0.5 * (ko + bf) dof <- 0.5 * (ko - bf) ddb <- 0.5 * (1. + bf) ddf <- 0.5 * (1. - bf) # Here rho and tau come in sigb <- ddb * rho + ddf * tau sigf <- ddf * rho + ddb * tau att <- 1 - sigf m2 <- (att + sigb) * (att - sigb) m2[which(m2 <= 0)] <- 0 m <- sqrt(m2) sb <- sdb * rho + sdf * tau sf <- sdf * rho + sdb * tau vb <- dob * rho + dof * tau vf <- dof * rho + dob * tau w <- sob * rho + sof * tau # Here the LAI comes in # Outputs for the case LAI = 0 if (lai < 0) { tss <- 1 too <- 1 tsstoo <- 1 rdd <- 0 tdd <- 1 rsd <- 0 tsd <- 0 rdo <- 0 tdo <- 0 rso <- 0 rsos <- 0 rsod <- 0 rddt <- rsoil rsdt <- rsoil rdot <- rsoil rsodt <- 0 * rsoil rsost <- rsoil rsot <- rsoil } else { # Other cases (LAI > 0) e1 <- exp(-m * lai) e2 <- e1 * e1 rinf <- (att - m) / sigb rinf2 <- rinf * rinf re <- rinf * e1 denom <- 1. - rinf2 * e2 j1ks <- jfunc1(ks, m, lai) j2ks <- jfunc2(ks, m, lai) j1ko <- jfunc1(ko, m, lai) j2ko <- jfunc2(ko, m, lai) ps <- (sf + sb * rinf) * j1ks qs <- (sf * rinf + sb) * j2ks pv <- (vf + vb * rinf) * j1ko qv <- (vf * rinf + vb) * j2ko rdd <- rinf * (1. - e2) / denom tdd <- (1. - rinf2) * e1 / denom tsd <- (ps - re * qs) / denom rsd <- (qs - re * ps) / denom tdo <- (pv - re * qv) / denom rdo <- (qv - re * pv) / denom tss <- exp(-ks * lai) too <- exp(-ko * lai) z <- jfunc3(ks, ko, lai) g1 <- (z - j1ks * too) / (ko + m) g2 <- (z - j1ko * tss) / (ks + m) tv1 <- (vf * rinf + vb) * g1 tv2 <- (vf + vb * rinf) * g2 t1 <- tv1 * (sf + sb * rinf) t2 <- tv2 * (sf * rinf + sb) t3 <- (rdo * qs + tdo * ps) * rinf # Multiple scattering contribution to bidirectional canopy reflectance rsod <- (t1 + t2 - t3) / (1. - rinf2) # Treatment of the hotspot-effect alf <- 1e6 # Apply correction 2 / (K + k) suggested by F.-M. Breon if (q > 0) { alf <- (dso / q) * 2. / (ks + ko) } if (alf > 200) { # inserted H. Bach 1 / 3 / 04 alf <- 200 } if (alf == 0) { # The pure hotspot - no shadow tsstoo <- tss sumint <- (1 - tss) / (ks * lai) } else { # Outside the hotspot fhot <- lai * sqrt(ko * ks) # Integrate by exponential Simpson method in 20 steps # the steps are arranged according to equal partitioning # of the slope of the joint probability function x1 <- 0 y1 <- 0 f1 <- 1 fint <- (1. - exp(-alf)) * 0.05 sumint <- 0 for (i in 1:20) { if (i < 20) { x2 <- -log(1. - i * fint) / alf } else { x2 <- 1 } y2 <- -(ko + ks) * lai * x2 + fhot * (1. - exp(-alf * x2)) / alf f2 <- exp(y2) sumint <- sumint + (f2 - f1) * (x2 - x1) / (y2 - y1) x1 <- x2 y1 <- y2 f1 <- f2 } tsstoo <- f1 } # Bidirectional reflectance # Single scattering contribution rsos <- w * lai * sumint # Total canopy contribution rso <- rsos + rsod # Interaction with the soil dn <- 1. - rsoil * rdd # rddt: bi-hemispherical reflectance factor rddt <- rdd + tdd * rsoil * tdd / dn # rsdt: directional-hemispherical reflectance factor for solar incident flux rsdt <- rsd + (tsd + tss) * rsoil * tdd / dn # rdot: hemispherical-directional reflectance factor in viewing direction rdot <- rdo + tdd * rsoil * (tdo + too) / dn # rsot: bi-directional reflectance factor rsodt <- rsod + ((tss + tsd) * tdo + (tsd + tss * rsoil * rdd) * too) * rsoil / dn rsost <- rsos + tsstoo * rsoil rsot <- rsost + rsodt } my_list <- list("rdot" = rdot, "rsot" = rsot, "rddt" = rddt, "rsdt" = rsdt) return(my_list) } #" Performs pro4sail2 simulation based on a set of combinations of input parameters #" @param leafgreen list. includes relfectance and transmittance for vegetation #1 (e.g. green vegetation) #" @param leafbrown list. includes relfectance and transmittance for vegetation #2 (e.g. brown vegetation) #" @param typelidf numeric. Type of leaf inclination distribution function #" @param lidfa numeric. #" if typelidf == 1, controls the average leaf slope #" if typelidf == 2, corresponds to average leaf angle #" @param lidfb numeric. #" if typelidf == 1, unused #" if typelidf == 2, controls the distribution"s bimodality #" @param lai numeric. Leaf Area Index #" @param hot numeric. Hot Spot parameter = ratio of the correlation length of leaf projections in the horizontal plane and the canopy height (doi:10.1016 / j.rse.2006.12.013) #" @param tts numeric. Sun zeith angle #" @param tto numeric. Observer zeith angle #" @param psi numeric. Azimuth Sun / Observer #" @param rsoil numeric. Soil reflectance #" @param fraction_brown numeric. Fraction of brown leaf area #" @param diss numeric. Layer dissociation factor #" @param cv numeric. vertical crown cover percentage #" = % ground area covered with crowns as seen from nadir direction #" @param zeta numeric. Tree shape factor #" = ratio of crown diameter to crown height #" #" @return list. rdot, rsot, rddt, rsdt #" rdot: hemispherical-directional reflectance factor in viewing direction #" rsot: bi-directional reflectance factor #" rsdt: directional-hemispherical reflectance factor for solar incident flux #" rddt: bi-hemispherical reflectance factor #" alfast: canopy absorptance for direct solar incident flux #" alfadt: canopy absorptance for hemispherical diffuse incident flux #" @export foursail2 <- function(leafgreen, leafbrown, typelidf = 2, lidfa = nULL, lidfb = nULL, lai = nULL, hot = nULL, tts = nULL, tto = nULL, psi = nULL, rsoil = nULL, fraction_brown = 0.5, diss = 0.5, cv = 1, zeta = 1) { # This version does not include non-Lambertian soil properties. # original codes do, and only need to add the following variables as input rddsoil <- rdosoil <- rsdsoil <- rsosoil <- rsoil # Geometric quantities rd <- pi / 180 # Generate leaf angle distribution from average leaf angle (ellipsoidal) or (a, b) parameters if (typelidf == 1) { foliar_distrib <- dladgen(lidfa, lidfb) lidf <- foliar_distrib$lidf litab <- foliar_distrib$litab } else if (typelidf == 2) { foliar_distrib <- campbell(lidfa) lidf <- foliar_distrib$lidf litab <- foliar_distrib$litab } if (lai < 0) { message("Please define positive LAI value") rddt <- rsdt <- rdot <- rsost <- rsot <- rsoil alfast <- alfadt <- 0 * rsoil } else if (lai == 0) { tss <- too <- tsstoo <- tdd <- 1.0 rdd <- rsd <- tsd <- rdo <- tdo <- 0.0 rso <- rsos <- rsod <- rsodt <- 0.0 rddt <- rsdt <- rdot <- rsost <- rsot <- rsoil alfast <- alfadt <- 0 * rsoil } else if (lai > 0) { cts <- cos(rd * tts) cto <- cos(rd * tto) ctscto <- cts * cto tants <- tan(rd * tts) tanto <- tan(rd * tto) cospsi <- cos(rd * psi) dso <- sqrt(tants * tants + tanto * tanto - 2.0 * tants * tanto * cospsi) # Clumping effects cs <- co <- 1.0 if (cv <= 1.0) { cs <- 1.0 - (1.0 - cv)^(1.0 / cts) co <- 1.0 - (1.0 - cv)^(1.0 / cto) } overlap <- 0.0 if (zeta > 0.0) { overlap <- min(cs * (1.0 - co), co * (1.0 - cs)) * exp(-dso / zeta) } fcd <- cs * co + overlap fcs <- (1.0 - cs) * co - overlap fod <- cs * (1.0 - co) - overlap fos <- (1.0 - cs) * (1.0 - co) + overlap fcdc <- 1.0 - (1.0 - fcd)^(0.5 / cts + 0.5 / cto) # Part depending on diss, fraction_brown, and leaf optical properties # First save the input fraction_brown as the old fraction_brown, as the following change is only artificial # Better define an fraction_brown that is actually used: fb, so that the input is not modified! fb <- fraction_brown # if only green leaves if (fraction_brown == 0.0) { fb <- 0.5 leafbrown$Reflectance <- leafgreen$Reflectance leafbrown$Transmittance <- leafgreen$Transmittance } if (fraction_brown == 1.0) { fb <- 0.5 leafgreen$Reflectance <- leafbrown$Reflectance leafgreen$Transmittance <- leafbrown$Transmittance } s <- (1.0 - diss) * fb * (1.0 - fb) # rho1 && tau1 : green foliage # rho2 && tau2 : brown foliage (bottom layer) rho1 <- ((1 - fb - s) * leafgreen$Reflectance + s * leafbrown$Reflectance) / (1 - fb) tau1 <- ((1 - fb - s) * leafgreen$Transmittance + s * leafbrown$Transmittance) / (1 - fb) rho2 <- (s * leafgreen$Reflectance + (fb - s) * leafbrown$Reflectance) / fb tau2 <- (s * leafgreen$Transmittance + (fb - s) * leafbrown$Transmittance) / fb # angular distance, compensation of shadow length # Calculate geometric factors associated with extinction and scattering # Initialise sums ks <- ko <- bf <- sob <- sof <- 0 # Weighted sums over LIDF for (i in 1:seq_along(litab)) { ttl <- litab[i] ctl <- cos(rd * ttl) # SAIL volscatt function gives interception coefficients # and two portions of the volume scattering phase function to be # multiplied by rho and tau, respectively resvolscatt <- volscatt(tts, tto, psi, ttl) chi_s <- resvolscatt$chi_s chi_o <- resvolscatt$chi_o frho <- resvolscatt$frho ftau <- resvolscatt$ftau # Extinction coefficients ksli <- chi_s / cts koli <- chi_o / cto # Area scattering coefficient fractions sobli <- frho * pi / ctscto sofli <- ftau * pi / ctscto bfli <- ctl * ctl ks <- ks + ksli * lidf[i] ko <- ko + koli * lidf[i] bf <- bf + bfli * lidf[i] sob <- sob + sobli * lidf[i] sof <- sof + sofli * lidf[i] } # Geometric factors to be used later in combination with rho and tau sdb <- 0.5 * (ks + bf) sdf <- 0.5 * (ks - bf) dob <- 0.5 * (ko + bf) dof <- 0.5 * (ko - bf) ddb <- 0.5 * (1. + bf) ddf <- 0.5 * (1. - bf) # LAIs in two layers lai1 <- (1 - fb) * lai lai2 <- fb * lai tss <- exp(-ks * lai) ck <- exp(-ks * lai1) alf <- 1e6 if (hot > 0.0) { alf <- (dso / hot) * 2.0 / (ks + ko) } if (alf > 200.0) { alf <- 200.0 # inserted H. Bach 1 / 3 / 04 } if (alf == 0.0) { # The pure hotspot tsstoo <- tss s1 <- (1 - ck) / (ks * lai) s2 <- (ck - tss) / (ks * lai) } else { # Outside the hotspot fhot <- lai * sqrt(ko * ks) # Integrate 2 layers by exponential simpson method in 20 steps # the steps are arranged according to equal partitioning # of the derivative of the joint probability function x1 <- y1 <- 0.0 f1 <- 1.0 ca <- exp(alf * (fb - 1.0)) fint <- (1.0 - ca) * .05 s1 <- 0.0 for (istep in 1:20) { if (istep < 20) { x2 <- -log(1. - istep * fint) / alf } else { x2 <- 1. - fb } y2 <- -(ko + ks) * lai * x2 + fhot * (1.0 - exp(-alf * x2)) / alf f2 <- exp(y2) s1 <- s1 + (f2 - f1) * (x2 - x1) / (y2 - y1) x1 <- x2 y1 <- y2 f1 <- f2 } fint <- (ca - exp(-alf)) * .05 s2 <- 0.0 for (istep in 1:20) { if (istep < 20) { x2 <- -log(ca - istep * fint) / alf } else { x2 <- 1.0 } y2 <- -(ko + ks) * lai * x2 + fhot * (1.0 - exp(-alf * x2)) / alf f2 <- exp(y2) s2 <- s2 + (f2 - f1) * (x2 - x1) / (y2 - y1) x1 <- x2 y1 <- y2 f1 <- f2 } tsstoo <- f1 } # Calculate reflectances and transmittances # Bottom layer tss <- exp(-ks * lai2) too <- exp(-ko * lai2) sb <- sdb * rho2 + sdf * tau2 sf <- sdf * rho2 + sdb * tau2 vb <- dob * rho2 + dof * tau2 vf <- dof * rho2 + dob * tau2 w2 <- sob * rho2 + sof * tau2 sigb <- ddb * rho2 + ddf * tau2 sigf <- ddf * rho2 + ddb * tau2 att <- 1.0 - sigf m2 <- (att + sigb) * (att - sigb) m2[m2 < 0] <- 0 m <- sqrt(m2) which_ncs <- which(m > 0.01) which_cs <- which(m <= 0.01) tdd <- rdd <- tsd <- rsd <- tdo <- rdo <- 0 * m rsod <- 0 * m if (length(which_ncs) > 0) { resncs <- nonconservativescattering(m[which_ncs], lai2, att[which_ncs], sigb[which_ncs], ks, ko, sf[which_ncs], sb[which_ncs], vf[which_ncs], vb[which_ncs], tss, too) tdd[which_ncs] <- resncs$tdd rdd[which_ncs] <- resncs$rdd tsd[which_ncs] <- resncs$tsd rsd[which_ncs] <- resncs$rsd tdo[which_ncs] <- resncs$tdo rdo[which_ncs] <- resncs$rdo rsod[which_ncs] <- resncs$rsod } if (length(which_cs) > 0) { rescs <- conservativescattering(m[which_cs], lai2, att[which_cs], sigb[which_cs], ks, ko, sf[which_cs], sb[which_cs], vf[which_cs], vb[which_cs], tss, too) tdd[which_cs] <- rescs$tdd rdd[which_cs] <- rescs$rdd tsd[which_cs] <- rescs$tsd rsd[which_cs] <- rescs$rsd tdo[which_cs] <- rescs$tdo rdo[which_cs] <- rescs$rdo rsod[which_cs] <- rescs$rsod } # Set background properties equal to those of the bottom layer on a black soil rddb <- rdd rsdb <- rsd rdob <- rdo rsodb <- rsod tddb <- tdd tsdb <- tsd tdob <- tdo toob <- too tssb <- tss # Top layer tss <- exp(-ks * lai1) too <- exp(-ko * lai1) sb <- sdb * rho1 + sdf * tau1 sf <- sdf * rho1 + sdb * tau1 vb <- dob * rho1 + dof * tau1 vf <- dof * rho1 + dob * tau1 w1 <- sob * rho1 + sof * tau1 sigb <- ddb * rho1 + ddf * tau1 sigf <- ddf * rho1 + ddb * tau1 att <- 1.0 - sigf m2 <- (att + sigb) * (att - sigb) m2[m2 < 0] <- 0 m <- sqrt(m2) which_ncs <- which(m > 0.01) which_cs <- which(m <= 0.01) tdd <- rdd <- tsd <- rsd <- tdo <- rdo <- 0 * m rsod <- 0 * m if (length(which_ncs) > 0) { resncs <- nonconservativescattering(m[which_ncs], lai1, att[which_ncs], sigb[which_ncs], ks, ko, sf[which_ncs], sb[which_ncs], vf[which_ncs], vb[which_ncs], tss, too) tdd[which_ncs] <- resncs$tdd rdd[which_ncs] <- resncs$rdd tsd[which_ncs] <- resncs$tsd rsd[which_ncs] <- resncs$rsd tdo[which_ncs] <- resncs$tdo rdo[which_ncs] <- resncs$rdo rsod[which_ncs] <- resncs$rsod } if (length(which_cs) > 0) { rescs <- conservativescattering(m[which_cs], lai1, att[which_cs], sigb[which_cs], ks, ko, sf[which_cs], sb[which_cs], vf[which_cs], vb[which_cs], tss, too) tdd[which_cs] <- rescs$tdd rdd[which_cs] <- rescs$rdd tsd[which_cs] <- rescs$tsd rsd[which_cs] <- rescs$rsd tdo[which_cs] <- rescs$tdo rdo[which_cs] <- rescs$rdo rsod[which_cs] <- rescs$rsod } # combine with bottom layer reflectances and transmittances (adding method) rn <- 1.0 - rdd * rddb tup <- (tss * rsdb + tsd * rddb) / rn tdn <- (tsd + tss * rsdb * rdd) / rn rsdt <- rsd + tup * tdd rdot <- rdo + tdd * (rddb * tdo + rdob * too) / rn rsodt <- rsod + (tss * rsodb + tdn * rdob) * too + tup * tdo rsost <- (w1 * s1 + w2 * s2) * lai rsot <- rsost + rsodt # Diffuse reflectances at the top and the bottom are now different rddt_t <- rdd + tdd * rddb * tdd / rn rddt_b <- rddb + tddb * rdd * tddb / rn # Transmittances of the combined canopy layers tsst <- tss * tssb toot <- too * toob tsdt <- tss * tsdb + tdn * tddb tdot <- tdob * too + tddb * (tdo + rdd * rdob * too) / rn tddt <- tdd * tddb / rn # Apply clumping effects to vegetation layer rddcb <- cv * rddt_b rddct <- cv * rddt_t tddc <- 1 - cv + cv * tddt rsdc <- cs * rsdt tsdc <- cs * tsdt rdoc <- co * rdot tdoc <- co * tdot tssc <- 1 - cs + cs * tsst tooc <- 1 - co + co * toot # new weight function fcdc for crown contribution (W. Verhoef, 22-05-08) rsoc <- fcdc * rsot tssooc <- fcd * tsstoo + fcs * toot + fod * tsst + fos # Canopy absorptance for black background (W. Verhoef, 02-03-04) alfas <- 1. - tssc - tsdc - rsdc alfad <- 1. - tddc - rddct # Add the soil background rn <- 1 - rddcb * rddsoil tup <- (tssc * rsdsoil + tsdc * rddsoil) / rn tdn <- (tsdc + tssc * rsdsoil * rddcb) / rn rddt <- rddct + tddc * rddsoil * tddc / rn rsdt <- rsdc + tup * tddc rdot <- rdoc + tddc * (rddsoil * tdoc + rdosoil * tooc) / rn rsot <- rsoc + tssooc * rsosoil + tdn * rdosoil * tooc + tup * tdoc # Effect of soil background on canopy absorptances (W. Verhoef, 02-03-04) alfast <- alfas + tup * alfad alfadt <- alfad * (1. + tddc * rddsoil / rn) } my_list <- list("rdot" = rdot, "rsot" = rsot, "rddt" = rddt, "rsdt" = rsdt, "alfast" = alfast, "alfadt" = alfadt) return(my_list) } #" computes non conservative scattering conditions #" @param m numeric. #" @param lai numeric. Leaf Area Index #" @param att numeric. #" @param sigb numeric. #" @param ks numeric. #" @param ko numeric. #" @param sf numeric. #" @param sb numeric. #" @param vf numeric. #" @param vb numeric. #" @param tss numeric. #" @param too numeric. #" #" @return list. tdd, rdd, tsd, rsd, tdo, rdo, rsod #" #" @export nonconservativescattering <- function(m, lai, att, sigb, ks, ko, sf, sb, vf, vb, tss, too) { e1 <- exp(-m * lai) e2 <- e1 * e1 rinf <- (att - m) / sigb rinf2 <- rinf * rinf re <- rinf * e1 denom <- 1. - rinf2 * e2 j1ks <- jfunc1(ks, m, lai) j2ks <- jfunc2(ks, m, lai) j1ko <- jfunc1(ko, m, lai) j2ko <- jfunc2(ko, m, lai) ps <- (sf + sb * rinf) * j1ks qs <- (sf * rinf + sb) * j2ks pv <- (vf + vb * rinf) * j1ko qv <- (vf * rinf + vb) * j2ko tdd <- (1. - rinf2) * e1 / denom rdd <- rinf * (1. - e2) / denom tsd <- (ps - re * qs) / denom rsd <- (qs - re * ps) / denom tdo <- (pv - re * qv) / denom rdo <- (qv - re * pv) / denom z <- jfunc2(ks, ko, lai) g1 <- (z - j1ks * too) / (ko + m) g2 <- (z - j1ko * tss) / (ks + m) tv1 <- (vf * rinf + vb) * g1 tv2 <- (vf + vb * rinf) * g2 t1 <- tv1 * (sf + sb * rinf) t2 <- tv2 * (sf * rinf + sb) t3 <- (rdo * qs + tdo * ps) * rinf # Multiple scattering contribution to bidirectional canopy reflectance rsod <- (t1 + t2 - t3) / (1. - rinf2) my_list <- list("tdd" = tdd, "rdd" = rdd, "tsd" = tsd, "rsd" = rsd, "tdo" = tdo, "rdo" = rdo, "rsod" = rsod) return(my_list) } #" computes conservative scattering conditions #" @param m numeric. #" @param lai numeric. Leaf Area Index #" @param att numeric. #" @param sigb numeric. #" @param ks numeric. #" @param ko numeric. #" @param sf numeric. #" @param sb numeric. #" @param vf numeric. #" @param vb numeric. #" @param tss numeric. #" @param too numeric. #" #" @return list. tdd, rdd, tsd, rsd, tdo, rdo, rsod #" #" @export conservativescattering <- function(m, lai, att, sigb, ks, ko, sf, sb, vf, vb, tss, too) { # near or complete conservative scattering j4 <- jfunc4(m, lai) amsig <- att - sigb apsig <- att + sigb rtp <- (1 - amsig * j4) / (1 + amsig * j4) rtm <- (-1 + apsig * j4) / (1 + apsig * j4) rdd <- 0.5 * (rtp + rtm) tdd <- 0.5 * (rtp - rtm) dns <- ks * ks - m * m dno <- ko * ko - m * m cks <- (sb * (ks - att) - sf * sigb) / dns cko <- (vb * (ko - att) - vf * sigb) / dno dks <- (-sf * (ks + att) - sb * sigb) / dns dko <- (-vf * (ko + att) - vb * sigb) / dno ho <- (sf * cko + sb * dko) / (ko + ks) rsd <- cks * (1 - tss * tdd) - dks * rdd rdo <- cko * (1 - too * tdd) - dko * rdd tsd <- dks * (tss - tdd) - cks * tss * rdd tdo <- dko * (too - tdd) - cko * too * rdd # Multiple scattering contribution to bidirectional canopy reflectance rsod <- ho * (1 - tss * too) - cko * tsd * too - dko * rsd my_list <- list("tdd" = tdd, "rdd" = rdd, "tsd" = tsd, "rsd" = rsd, "tdo" = tdo, "rdo" = rdo, "rsod" = rsod) return(my_list) } #" computes the leaf angle distribution function value (freq) #" #" Ellipsoidal distribution function characterised by the average leaf #" inclination angle in degree (ala) #" Campbell 1986 #" @param ala average leaf angle #" @return foliar_distrib list. lidf and litab #" @export campbell <- function(ala) { tx1 <- c(10., 20., 30., 40., 50., 60., 70., 80., 82., 84., 86., 88., 90.) tx2 <- c(0., 10., 20., 30., 40., 50., 60., 70., 80., 82., 84., 86., 88.) litab <- (tx2 + tx1) / 2 n <- length(litab) tl1 <- tx1 * (pi / 180) tl2 <- tx2 * (pi / 180) excent <- exp(-1.6184e-5 * ala**3 + 2.1145e-3 * ala**2 - 1.2390e-1 * ala + 3.2491) sum0 <- 0 freq <- c() for (i in 1:n) { x1 <- excent / (sqrt(1. + excent**2. * tan(tl1[i])**2)) x2 <- excent / (sqrt(1. + excent**2. * tan(tl2[i])**2)) if (excent == 1) { freq[i] <- abs(cos(tl1[i]) - cos(tl2[i])) } else { alpha <- excent / sqrt(abs(1 - excent**2)) alpha2 <- alpha**2 x12 <- x1**2 x22 <- x2**2 alpx1 <- 0 * alpha2 alpx2 <- 0 * alpha2 almx1 <- 0 * alpha2 almx2 <- 0 * alpha2 if (excent > 1) { alpx1 <- sqrt(alpha2[excent > 1] + x12[excent > 1]) alpx2[excent > 1] <- sqrt(alpha2[excent > 1] + x22[excent > 1]) dum <- x1 * alpx1 + alpha2 * log(x1 + alpx1) freq[i] <- abs(dum - (x2 * alpx2 + alpha2 * log(x2 + alpx2))) } else { almx1 <- sqrt(alpha2 - x12) almx2 <- sqrt(alpha2 - x22) dum <- x1 * almx1 + alpha2 * asin(x1 / alpha) freq[i] <- abs(dum - (x2 * almx2 + alpha2 * asin(x2 / alpha))) } } } sum0 <- sum(freq) freq0 <- freq / sum0 foliar_distrib <- list("lidf" = freq0, "litab" = litab) return(foliar_distrib) } #" computes the leaf angle distribution function value (freq) #" #" Using the original bimodal distribution function initially proposed in SAIL #" references #" ---------- #" (Verhoef1998) Verhoef, Wout. Theory of radiative transfer models applied #" in optical remote sensing of vegetation canopies. #" nationaal Lucht en Ruimtevaartlaboratorium, 1998. #" http: / / library.wur.nl / WebQuery / clc / 945481. #" @param a controls the average leaf slope #" @param b controls the distribution"s bimodality #" LIDF type a b #" Planophile 1 0 #" Erectophile -1 0 #" Plagiophile 0 -1 #" Extremophile 0 1 #" Spherical -0.35 -0.15 #" Uniform 0 0 #" requirement: ||lidfa|| + ||lidfb|| < 1 #" #" @return foliar_distrib list. lidf and litab #" @export dladgen <- function(a, b) { litab <- c(5., 15., 25., 35., 45., 55., 65., 75., 81., 83., 85., 87., 89.) freq <- c() for (i1 in 1:8) { t <- i1 * 10 freq[i1] <- dcum(a, b, t) } for (i2 in 9:12) { t <- 80. + (i2 - 8) * 2. freq[i2] <- dcum(a, b, t) } freq[13] <- 1 for (i in 13:2) { freq[i] <- freq[i] - freq[i - 1] } foliar_distrib <- list("lidf" = freq, "litab" = litab) return(foliar_distrib) } #" dcum function #" @param a numeric. controls the average leaf slope #" @param b numeric. controls the distribution"s bimodality #" @param t numeric. angle #" @return f #" @export dcum <- function(a, b, t) { rd <- pi / 180 if (a >= 1) { f <- 1 - cos(rd * t) } else { eps <- 1e-8 delx <- 1 x <- 2 * rd * t p <- x while (delx >= eps) { y <- a * sin(x) + .5 * b * sin(2. * x) dx <- .5 * (y - x + p) x <- x + dx delx <- abs(dx) } f <- (2. * y + p) / pi } return(f) } #" J1 function with avoidance of singularity problem #" #" @param k numeric. Extinction coefficient for direct (solar or observer) flux #" @param l numeric. #" @param t numeric. Leaf Area Index #" @return jout numeric. #" @export jfunc1 <- function(k, l, t) { # J1 function with avoidance of singularity problem del <- (k - l) * t jout <- 0 * l jout[which(abs(del) > 1e-3)] <- (exp(-l[which(abs(del) > 1e-3)] * t) - exp(-k * t)) / (k - l[which(abs(del) > 1e-3)]) jout[which(abs(del) <= 1e-3)] <- 0.5 * t * (exp(-k * t) + exp(-l[which(abs(del) <= 1e-3)] * t)) * (1 - del[which(abs(del) <= 1e-3)] * del[which(abs(del) <= 1e-3)] / 12) return(jout) } #" J2 function with avoidance of singularity problem #" #" @param k numeric. Extinction coefficient for direct (solar or observer) flux #" @param l numeric. #" @param t numeric. Leaf Area Index #" @return jout numeric. #" @export jfunc2 <- function(k, l, t) { # J2 function jout <- (1. - exp(-(k + l) * t)) / (k + l) return(jout) } #" J3 function with avoidance of singularity problem #" #" @param k numeric. Extinction coefficient for direct (solar or observer) flux #" @param l numeric. #" @param t numeric. Leaf Area Index #" @return jout numeric. #" @export jfunc3 <- function(k, l, t) { out <- (1. - exp(-(k + l) * t)) / (k + l) return(out) } #" j4 function for treating (near) conservative scattering #" #" @param m numeric. Extinction coefficient for direct (solar or observer) flux #" @param t numeric. Leaf Area Index #" @return jout numeric. #" @export jfunc4 <- function(m, t) { del <- m * t out <- 0 * del out[del > 1e-3] <- (1 - exp(-del)) / (m * (1 + exp(-del))) out[del <= 1e-3] <- 0.5 * t * (1. - del * del / 12.) return(out) } #" compute volume scattering functions and interception coefficients #" for given solar zenith, viewing zenith, azimuth and leaf inclination angle. #" #" @param tts numeric. solar zenith #" @param tto numeric. viewing zenith #" @param psi numeric. azimuth #" @param ttl numeric. leaf inclination angle #" @return res list. includes chi_s, chi_o, frho, ftau #" @export volscatt <- function(tts, tto, psi, ttl) { #******************************************************************************** #* chi_s = interception functions #* chi_o = interception functions #* frho = function to be multiplied by leaf reflectance rho #* ftau = functions to be multiplied by leaf transmittance tau #******************************************************************************** # Wout Verhoef, april 2001, for CROMA rd <- pi / 180 costs <- cos(rd * tts) costo <- cos(rd * tto) sints <- sin(rd * tts) sinto <- sin(rd * tto) cospsi <- cos(rd * psi) psir <- rd * psi costl <- cos(rd * ttl) sintl <- sin(rd * ttl) cs <- costl * costs co <- costl * costo ss <- sintl * sints so <- sintl * sinto #c .............................................................................. #c betas -bts- and betao -bto- computation #c Transition angles (beta) for solar (betas) and view (betao) directions #c if thetav + thetal > pi / 2, bottom side of the leaves is observed for leaf azimut #c interval betao + phi<leaf azimut<2pi-betao + phi. #c if thetav + thetal<pi / 2, top side of the leaves is always observed, betao=pi #c same consideration for solar direction to compute betas #c .............................................................................. cosbts <- 5 if (abs(ss) > 1e-6) { cosbts <- -cs / ss } cosbto <- 5 if (abs(so) > 1e-6) { cosbto <- -co / so } if (abs(cosbts) < 1) { bts <- acos(cosbts) ds <- ss } else { bts <- pi ds <- cs } chi_s <- 2. / pi * ((bts - pi * .5) * cs + sin(bts) * ss) if (abs(cosbto) < 1) { bto <- acos(cosbto) doo <- so } else if (tto < 90) { bto <- pi doo <- co } else { bto <- 0 doo <- -co } chi_o <- 2. / pi * ((bto - pi * .5) * co + sin(bto) * so) #c .............................................................................. #c computation of auxiliary azimut angles bt1, bt2, bt3 used #c for the computation of the bidirectional scattering coefficient w #c ............................................................................. btran1 <- abs(bts - bto) btran2 <- pi - abs(bts + bto - pi) if (psir <= btran1) { bt1 <- psir bt2 <- btran1 bt3 <- btran2 } else { bt1 <- btran1 if (psir <= btran2) { bt2 <- psir bt3 <- btran2 } else { bt2 <- btran2 bt3 <- psir } } t1 <- 2. * cs * co + ss * so * cospsi t2 <- 0 if (bt2 > 0) { t2 <- sin(bt2) * (2. * ds * doo + ss * so * cos(bt1) * cos(bt3)) } denom <- 2. * pi * pi frho <- ((pi - bt2) * t1 + t2) / denom ftau <- (-bt2 * t1 + t2) / denom if (frho < 0) { frho <- 0 } if (ftau < 0) { ftau <- 0 } res <- list("chi_s" = chi_s, "chi_o" = chi_o, "frho" = frho, "ftau" = ftau) return(res) }