Mercurial > repos > ecology > srs_metadata
comparison prosail-master/R/Lib_SpectralIndices.R @ 0:054b2522a933 draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:38:38 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:054b2522a933 |
---|---|
1 # ============================================================================== = | |
2 # prosail | |
3 # Lib_spectralindices.R | |
4 # ============================================================================== = | |
5 # PROGRAMMERS: | |
6 # Jean-Baptiste FERET <jb.feret@teledetection.fr> | |
7 # Florian de BOISSIEU <fdeboiss@gmail.com> | |
8 # Copyright 2019/11 Jean-Baptiste FERET | |
9 # ============================================================================== = | |
10 # This Library includes aims at computing spectral indices from reflectance data | |
11 # ============================================================================== = | |
12 | |
13 #" This function computes Area under curve for continuum removed reflectances | |
14 #" See Malenovský et al. (2013) for details | |
15 #" http://dx.doi.org/10.1016/j.rse.2012.12.015 | |
16 #" | |
17 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
18 #" @param sensorbands numeric. vector containing central wavelength for each spectral band in the image | |
19 #" @param aucminmax list. wavelengths of lower and upper boundaries ("CRmin" and "CRmax") | |
20 #" @param reflfactor numeric. multiplying factor used to write reflectance in image (==10000 for S2) | |
21 #" | |
22 #" @return aucval raster | |
23 #" @export | |
24 auc <- function(refl, sensorbands, aucminmax, reflfactor = 1) { | |
25 | |
26 aucbands <- list() | |
27 aucbands[["CRmin"]] <- sensorbands[get_closest_bands(sensorbands, aucminmax[["CRmin"]])] | |
28 aucbands[["CRmax"]] <- sensorbands[get_closest_bands(sensorbands, aucminmax[["CRmax"]])] | |
29 bands <- get_closest_bands(sensorbands, aucbands) | |
30 for (i in bands[["CRmin"]]:bands[["CRmax"]]) { | |
31 if (is.na(match(i, bands))) { | |
32 aucbands[[paste("B", i, sep = "")]] <- sensorbands[i] | |
33 } | |
34 } | |
35 # compute continuum removal for all spectral bands | |
36 cr <- cr_wl(refl = refl, sensorbands = sensorbands, | |
37 crbands = aucbands, reflfactor = reflfactor) | |
38 | |
39 wl <- sort(unlist(aucbands), decreasing = FALSE) | |
40 aucval <- 0.5 * (1 - cr[[1]]) * (wl[2] - wl[1]) | |
41 for (i in 2:length(cr)) { | |
42 aucval <- aucval + 0.5 * (2 - cr[[i - 1]] - cr[[i]]) * (wl[i + 1] - wl[i]) | |
43 } | |
44 aucval <- aucval + 0.5 * (1 - cr[[length(cr)]]) * (wl[i + 2] - wl[i + 1]) | |
45 return(aucval) | |
46 } | |
47 | |
48 #" This function extracts boundaries to be used to compute continuum from reflectance data | |
49 #" | |
50 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
51 #" @param sensorbands numeric. vector containing central wavelength for each spectral band in the image | |
52 #" @param crbands list. list of spectral bands (central wavelength) including CRmin and CRmax | |
53 #" @param reflfactor numeric. multiplying factor used to write reflectance in image ( == 10000 for S2) | |
54 #" | |
55 #" @return crminmax list. list of rasters corresponding to minimum and maximum wavelengths | |
56 #" @export | |
57 crbound <- function(refl, sensorbands, crbands, reflfactor = 1) { | |
58 | |
59 # get closest spectral bands from CR1 and CR2 | |
60 bands <- get_closest_bands(sensorbands, list(crbands[["CRmin"]], crbands[["CRmax"]])) | |
61 wl <- sensorbands[bands] | |
62 # get equation for line going from CR1 to CR2 | |
63 crminmax <- readrasterbands(refl = refl, bands = bands, reflfactor = reflfactor) | |
64 names(crminmax) <- paste("wl_", as.character(wl), sep = "") | |
65 return(crminmax) | |
66 } | |
67 | |
68 #" This function extracts boundaries to be used to compute continuum from reflectance data | |
69 #" | |
70 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
71 #" @param sensorbands numeric. vector containing central wavelength for each spectral band in the image | |
72 #" @param crbands list. list of spectral bands (central wavelength) including CRmin and CRmax | |
73 #" @param reflfactor numeric. multiplying factor used to write reflectance in image ( == 10000 for S2) | |
74 #" | |
75 #" @return outlier_iqr numeric. band numbers of original sensor corresponding to S2 | |
76 #" @importFrom progress progress_bar | |
77 #" @export | |
78 cr_wl <- function(refl, sensorbands, crbands, reflfactor = 1) { | |
79 | |
80 # Make sure CRmin and CRmax are correctly defined | |
81 if (is.na(match("CRmin", names(crbands))) || is.na(match("CRmax", names(crbands)))) { | |
82 stop("Please define CRmin and CRmax (CRmin<CRmax) as spectral bands in crbands") | |
83 } | |
84 if (crbands[["CRmax"]] < crbands[["CRmin"]]) { | |
85 stop("Please define CRmin < CRmax in crbands") | |
86 } | |
87 # extract CRmin and CRmax | |
88 crminmax <- crbound(refl, sensorbands, crbands, reflfactor = reflfactor) | |
89 # extract other bands and compute CR | |
90 crmin <- sensorbands[get_closest_bands(sensorbands, crbands[["CRmin"]])] | |
91 crmax <- sensorbands[get_closest_bands(sensorbands, crbands[["CRmax"]])] | |
92 crbands[["CRmin"]] <- NULL | |
93 crbands[["CRmax"]] <- NULL | |
94 cr <- list() | |
95 # initiate progress bar | |
96 pgbarlength <- length(crbands) | |
97 pb <- progress_bar$new( | |
98 format = "Computing continuum removal [:bar] :percent in :elapsedfull, estimated time remaining :eta", | |
99 total = pgbarlength, clear = FALSE, width = 100) | |
100 # computation for each band | |
101 for (band in crbands) { | |
102 pb$tick() | |
103 bandrank <- get_closest_bands(sensorbands, band) | |
104 raster2cr <- readrasterbands(refl = refl, bands = bandrank, reflfactor = reflfactor) | |
105 cr[[as.character(band)]] <- computecr(wlmin = crmin, wlmax = crmax, | |
106 wltarget = band, boundaries = crminmax, | |
107 target = raster2cr) | |
108 } | |
109 return(cr) | |
110 } | |
111 | |
112 #" This function computes continuum removal value for a spectral band of interest, | |
113 #" based on lower and upper wavelengths corresponding to boundaries of the continuum | |
114 #" | |
115 #" @param wlmin numeric. wavelength of the spectral band corresponding to minimum boundary | |
116 #" @param wlmax numeric. wavelength of the spectral band corresponding to maximum boundary | |
117 #" @param wltarget numeric. wavelength of the spectral band for which cr is computed | |
118 #" @param boundaries list. raster objects corresponding to minimum and maximum wavelengths | |
119 #" @param target list. raster object corresponding target wavelength | |
120 #" | |
121 #" @return cr list. raster object corresponding to continuum removed value | |
122 #" @export | |
123 computecr <- function(wlmin, wlmax, wltarget, boundaries, target) { | |
124 | |
125 cr <- target / (boundaries[[1]] + (wltarget - wlmin) * (boundaries[[2]] - boundaries[[1]]) / (wlmax - wlmin)) | |
126 return(cr) | |
127 } | |
128 | |
129 #" this function produces a spectral index from an expression defining a spectral index | |
130 #" | |
131 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
132 #" @param sensorbands numeric. wavelength in nanometers of the spectral bands of refl. | |
133 #" @param expressindex character. expression corresponding to the spectral index to compute | |
134 #" @param listbands list. list of spectral bands defined in the "expressindex" variable | |
135 #" @param reflfactor numeric. multiplying factor used to write reflectance in image ( == 10000 for S2) | |
136 #" @param nameindex character. name for the index to be computed, provided in the raster layer | |
137 #" | |
138 #" @return numeric. band numbers of original sensor corresponding to S2 | |
139 #" @export | |
140 spectralindices_fromexpression <- function(refl, sensorbands, expressindex, listbands, reflfactor = 1, nameindex = NULL) { | |
141 | |
142 # define which bands to be used in the spectral index | |
143 bands <- get_closest_bands(sensorbands, listbands) | |
144 | |
145 classraster <- class(refl) | |
146 if (classraster == "RasterBrick" || classraster == "RasterStack" || classraster == "stars") { | |
147 # if !reflfactor == 1 then apply a reflectance factor | |
148 if (classraster == "stars") { | |
149 refl <- refl[bands] | |
150 } else { | |
151 refl <- raster::subset(refl, bands) | |
152 } | |
153 if (!reflfactor == 1) { | |
154 refl <- refl / reflfactor | |
155 } | |
156 } else if (is.list(refl)) { | |
157 refl <- raster::stack(refl[bands]) # checks that all rasters have same crs/extent | |
158 if (!reflfactor == 1) { | |
159 refl <- refl / reflfactor | |
160 } | |
161 } else { | |
162 stop("refl is expected to be a RasterStack, RasterBrick, Stars object or a list of rasters") | |
163 } | |
164 names(refl) <- gsub(pattern = "B", replacement = "Band", x = names(bands)) | |
165 | |
166 nbbands <- unique(as.numeric(gsub(pattern = "B", | |
167 replacement = "", | |
168 x = unlist(regmatches(expressindex, | |
169 gregexpr("B[[:digit:]] + ", | |
170 expressindex)))))) | |
171 sortband <- sort(nbbands, index.return = TRUE, decreasing = TRUE) | |
172 matches <- unique(unlist(regmatches(expressindex, gregexpr("B[[:digit:]] + ", expressindex))))[sortband$ix] | |
173 replaces <- paste("refl[['Band", gsub(pattern = "B", replacement = "", x = matches), "']]", sep = "") | |
174 expressindex_final <- expressindex | |
175 for (bb in 1:seq_along(matches)) { | |
176 expressindex_final <- gsub(pattern = matches[bb], replacement = replaces[bb], x = expressindex_final) | |
177 } | |
178 si <- eval(parse(text = expressindex_final)) | |
179 if (!is.null(nameindex)) { | |
180 names(si) <- nameindex | |
181 } | |
182 return(si) | |
183 } | |
184 | |
185 #" this function aims at computing spectral indices from Sensor reflectance data in raster object | |
186 #" it computes the spectral indices based on their computation with Sentinel-2 | |
187 #" and assumes that the bands of the S2 data follow this order | |
188 #" wavelength = {496.6, 560.0, 664.5, 703.9, 740.2, 782.5, 835.1, 864.8, 1613.7, 2202.4} | |
189 #" Full description of the indices can be found here: | |
190 #" https://www.sentinel-hub.com/eotaxonomy/indices | |
191 #" | |
192 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
193 #" @param sensorbands numeric. wavelength in nanometers of the spectral bands of refl. | |
194 #" @param sel_indices list. list of spectral indices to be computed | |
195 #" @param stackout logical. If TRUE returns a stack, otherwise a list of rasters. | |
196 #" @param reflfactor numeric. multiplying factor used to write reflectance in image ( == 10000 for S2) | |
197 #" | |
198 #" @return list. includes | |
199 #" - spectralindices: List of spectral indices computed from the reflectance initially provided | |
200 #" - listindices: list of spectral indices computable with the function | |
201 #" @importFrom methods is | |
202 #" @importFrom raster stack brick | |
203 #" @export | |
204 | |
205 computespectralindices_raster <- function(refl, sensorbands, sel_indices = "ALL", stackout = TRUE, reflfactor = 1) { | |
206 | |
207 s2bands <- c("B2" = 496.6, "B3" = 560.0, "B4" = 664.5, "B5" = 703.9, "B6" = 740.2, | |
208 "B7" = 782.5, "B8" = 835.1, "B8A" = 864.8, "B11" = 1613.7, "B12" = 2202.4) | |
209 | |
210 spectralindices <- list() | |
211 sen2s2 <- get_closest_bands(sensorbands, s2bands) | |
212 classraster <- class(refl) | |
213 if (classraster == "RasterBrick" || classraster == "RasterStack" || classraster == "stars") { | |
214 # if !reflfactor == 1 then apply a reflectance factor | |
215 if (classraster == "stars") { | |
216 refl <- refl[sen2s2] | |
217 } else { | |
218 refl <- raster::subset(refl, sen2s2) | |
219 } | |
220 if (!reflfactor == 1) { | |
221 refl <- refl / reflfactor | |
222 } | |
223 } else if (is.list(refl)) { | |
224 refl <- raster::stack(refl[sen2s2]) # checks that all rasters have same crs/extent | |
225 if (!reflfactor == 1) { | |
226 refl <- refl / reflfactor | |
227 } | |
228 } else { | |
229 stop("refl is expected to be a RasterStack, RasterBrick, Stars object or a list of rasters") | |
230 } | |
231 names(refl) <- names(sen2s2) | |
232 | |
233 indexall <- list() | |
234 | |
235 # inelegant but meeeeh | |
236 listindices <- list("ARI1", "ARI2", "ARVI", "BAI", "BAIS2", "CCCI", "CHL_RE", "CRI1", "CRI2", "EVI", "EVI2", | |
237 "GRVI1", "GNDVI", "IRECI", "LAI_SAVI", "MCARI", "mNDVI705", "MSAVI2", | |
238 "MSI", "mSR705", "MTCI", "nBR_RAW", "NDI_45", "NDII", "NDSI", "NDVI", "NDVI_G", | |
239 "NDVI705", "NDWI1", "NDWI2", "PSRI", "PSRI_NIR", "RE_NDVI", "RE_NDWI", "S2REP", | |
240 "SAVI", "SIPI", "SR", "CR_SWIR") | |
241 if (sel_indices[1] == "ALL") { | |
242 sel_indices <- listindices | |
243 } | |
244 if ("ARI1" %in% sel_indices) { | |
245 ari1 <- (1 / refl[["B3"]]) - (1 / refl[["B5"]]) | |
246 spectralindices$ARI1 <- ari1 | |
247 } | |
248 if ("ARI2" %in% sel_indices) { | |
249 ari2 <- (refl[["B8"]] / refl[["B2"]]) - (refl[["B8"]] / refl[["B3"]]) | |
250 spectralindices$ARI2 <- ari2 | |
251 } | |
252 if ("ARVI" %in% sel_indices) { | |
253 arvi <- (refl[["B8"]] - (2 * refl[["B4"]] - refl[["B2"]])) / (refl[["B8"]] + (2 * refl[["B4"]] - refl[["B2"]])) | |
254 spectralindices$ARVI <- arvi | |
255 } | |
256 if ("BAI" %in% sel_indices) { | |
257 bai <- (1 / ((0.1 - refl[["B4"]])**2 + (0.06 - refl[["B8"]])**2)) | |
258 spectralindices$BAI <- bai | |
259 } | |
260 if ("BAIS2" %in% sel_indices) { | |
261 bais2 <- (1 - ((refl[["B6"]] * refl[["B7"]] * refl[["B8A"]]) / refl[["B4"]])**0.5) * ((refl[["B12"]] - refl[["B8A"]]) / ((refl[["B12"]] + refl[["B8A"]])**0.5) + 1) | |
262 spectralindices$BAIS2 <- bais2 | |
263 } | |
264 if ("CCCI" %in% sel_indices) { | |
265 ccci <- ((refl[["B8"]] - refl[["B5"]]) / (refl[["B8"]] + refl[["B5"]])) / ((refl[["B8"]] - refl[["B4"]]) / (refl[["B8"]] + refl[["B4"]])) | |
266 spectralindices$CCCI <- ccci | |
267 } | |
268 if ("CHL_RE" %in% sel_indices) { | |
269 chl_re <- refl[["B5"]] / refl[["B8"]] | |
270 spectralindices$CHL_RE <- chl_re | |
271 } | |
272 if ("CRI1" %in% sel_indices) { | |
273 cri1 <- (1 / refl[["B2"]]) - (1 / refl[["B3"]]) | |
274 spectralindices$CRI1 <- cri1 | |
275 } | |
276 if ("CRI2" %in% sel_indices) { | |
277 cri2 <- (1 / refl[["B2"]]) - (1 / refl[["B5"]]) | |
278 spectralindices$CRI2 <- cri2 | |
279 } | |
280 if ("EVI" %in% sel_indices) { | |
281 evi <- 2.5 * (refl[["B8"]] - refl[["B4"]]) / ((refl[["B8"]] + 6 * refl[["B4"]] - 7.5 * refl[["B2"]] + 1)) | |
282 spectralindices$EVI <- evi | |
283 } | |
284 if ("EVI2" %in% sel_indices) { | |
285 evi2 <- 2.5 * (refl[["B8"]] - refl[["B4"]]) / (refl[["B8"]] + 2.4 * refl[["B4"]] + 1) | |
286 spectralindices$EVI2 <- evi2 | |
287 } | |
288 if ("GRVI1" %in% sel_indices) { | |
289 grvi1 <- (refl[["B4"]] - refl[["B3"]]) / (refl[["B4"]] + refl[["B3"]]) | |
290 spectralindices$GRVI1 <- grvi1 | |
291 } | |
292 if ("GNDVI" %in% sel_indices) { | |
293 gndvi <- (refl[["B8"]] - refl[["B3"]]) / (refl[["B8"]] + refl[["B3"]]) | |
294 spectralindices$GNDVI <- gndvi | |
295 } | |
296 if ("IRECI" %in% sel_indices) { | |
297 ireci <- (refl[["B7"]] - refl[["B4"]]) * (refl[["B6"]] / (refl[["B5"]])) | |
298 spectralindices$IRECI <- ireci | |
299 } | |
300 if ("LAI_SAVI" %in% sel_indices) { | |
301 lai_savi <- - log(0.371 + 1.5 * (refl[["B8"]] - refl[["B4"]]) / (refl[["B8"]] + refl[["B4"]] + 0.5)) / 2.4 | |
302 spectralindices$LAI_SAVI <- lai_savi | |
303 } | |
304 if ("MCARI" %in% sel_indices) { | |
305 mcari <- (1 - 0.2 * (refl[["B5"]] - refl[["B3"]]) / (refl[["B5"]] - refl[["B4"]])) | |
306 spectralindices$MCARI <- mcari | |
307 } | |
308 if ("mNDVI705" %in% sel_indices) { | |
309 mndvi705 <- (refl[["B6"]] - refl[["B5"]]) / (refl[["B6"]] + refl[["B5"]] - 2 * refl[["B2"]]) | |
310 spectralindices$mNDVI705 <- mndvi705 | |
311 } | |
312 if ("MSAVI2" %in% sel_indices) { | |
313 msavi2 <- ((refl[["B8"]] + 1) - 0.5 * sqrt(((2 * refl[["B8"]]) - 1)**2 + 8 * refl[["B4"]])) | |
314 spectralindices$MSAVI2 <- msavi2 | |
315 } | |
316 if ("MSI" %in% sel_indices) { | |
317 msi <- refl[["B11"]] / refl[["B8A"]] | |
318 spectralindices$MSI <- msi | |
319 } | |
320 if ("mSR705" %in% sel_indices) { | |
321 msr705 <- (refl[["B6"]] - refl[["B2"]]) / (refl[["B5"]] - refl[["B2"]]) | |
322 spectralindices$mSR705 <- msr705 | |
323 } | |
324 if ("MTCI" %in% sel_indices) { | |
325 mtci <- (refl[["B6"]] - refl[["B5"]]) / (refl[["B5"]] + refl[["B4"]]) | |
326 spectralindices$MTCI <- mtci | |
327 } | |
328 if ("nBR_RAW" %in% sel_indices) { | |
329 nbr_raw <- (refl[["B8"]] - refl[["B12"]]) / (refl[["B8"]] + refl[["B12"]]) | |
330 spectralindices$nBR_RAW <- nbr_raw | |
331 } | |
332 if ("NDI_45" %in% sel_indices) { | |
333 ndi_45 <- (refl[["B5"]] - refl[["B4"]]) / (refl[["B5"]] + refl[["B4"]]) | |
334 spectralindices$NDI_45 <- ndi_45 | |
335 } | |
336 if ("NDII" %in% sel_indices) { | |
337 ndii <- (refl[["B8A"]] - refl[["B11"]]) / (refl[["B8A"]] + refl[["B11"]]) | |
338 spectralindices$NDII <- ndii | |
339 } | |
340 if ("NDSI" %in% sel_indices) { | |
341 ndsi <- (refl[["B3"]] - refl[["B11"]]) / (refl[["B3"]] + refl[["B11"]]) | |
342 spectralindices$NDSI <- ndsi | |
343 } | |
344 if ("NDVI" %in% sel_indices) { | |
345 ndvi <- (refl[["B8"]] - refl[["B4"]]) / (refl[["B8"]] + refl[["B4"]]) | |
346 spectralindices$NDVI <- ndvi | |
347 } | |
348 if ("NDVI_G" %in% sel_indices) { | |
349 ndvi_g <- refl[["B3"]] * (refl[["B8"]] - refl[["B4"]]) / (refl[["B8"]] + refl[["B4"]]) | |
350 spectralindices$NDVI_G <- ndvi_g | |
351 } | |
352 if ("NDVI705" %in% sel_indices) { | |
353 ndvi705 <- (refl[["B6"]] - refl[["B5"]]) / (refl[["B6"]] + refl[["B5"]]) | |
354 spectralindices$NDVI705 <- ndvi705 | |
355 } | |
356 if ("NDWI" %in% sel_indices) { | |
357 ndwi <- (refl[["B3"]] - refl[["B8"]]) / (refl[["B3"]] + refl[["B8"]]) | |
358 spectralindices$NDWI <- ndwi | |
359 } | |
360 if ("NDWI1" %in% sel_indices) { | |
361 ndwi1 <- (refl[["B8A"]] - refl[["B11"]]) / (refl[["B8A"]] + refl[["B11"]]) | |
362 spectralindices$NDWI1 <- ndwi1 | |
363 } | |
364 if ("NDWI2" %in% sel_indices) { | |
365 ndwi2 <- (refl[["B8A"]] - refl[["B12"]]) / (refl[["B8A"]] + refl[["B12"]]) | |
366 spectralindices$NDWI2 <- ndwi2 | |
367 } | |
368 if ("PSRI" %in% sel_indices) { | |
369 psri <- (refl[["B4"]] - refl[["B2"]]) / (refl[["B5"]]) | |
370 spectralindices$PSRI <- psri | |
371 } | |
372 if ("PSRI_NIR" %in% sel_indices) { | |
373 psri_nir <- (refl[["B4"]] - refl[["B2"]]) / (refl[["B8"]]) | |
374 spectralindices$PSRI_NIR <- psri_nir | |
375 } | |
376 if ("RE_NDVI" %in% sel_indices) { | |
377 re_ndvi <- (refl[["B8"]] - refl[["B6"]]) / (refl[["B8"]] + refl[["B6"]]) | |
378 spectralindices$RE_NDVI <- re_ndvi | |
379 } | |
380 if ("RE_NDWI" %in% sel_indices) { | |
381 re_ndwi <- (refl[["B4"]] - refl[["B6"]]) / (refl[["B4"]] + refl[["B6"]]) | |
382 spectralindices$RE_NDWI <- re_ndwi | |
383 } | |
384 if ("S2REP" %in% sel_indices) { | |
385 s2rep <- 705 + 35 * (0.5 * (refl[["B8"]] + refl[["B5"]]) - refl[["B6"]]) / (refl[["B7"]] - refl[["B6"]]) | |
386 spectralindices$S2REP <- s2rep | |
387 } | |
388 if ("SAVI" %in% sel_indices) { | |
389 savi <- 1.5 * (refl[["B8"]] - refl[["B5"]]) / (refl[["B8"]] + refl[["B5"]] + 0.5) | |
390 spectralindices$SAVI <- savi | |
391 } | |
392 if ("SIPI" %in% sel_indices) { | |
393 sipi <- (refl[["B8"]] - refl[["B2"]]) / (refl[["B8"]] - refl[["B4"]]) | |
394 spectralindices$SIPI <- sipi | |
395 } | |
396 if ("SR" %in% sel_indices) { | |
397 sr <- refl[["B8"]] / refl[["B4"]] | |
398 spectralindices$SR <- sr | |
399 } | |
400 if ("TCARI" %in% sel_indices) { | |
401 sr <- refl[["B8"]] / refl[["B4"]] | |
402 spectralindices$SR <- sr | |
403 } | |
404 if ("CR_SWIR" %in% sel_indices) { | |
405 cr_swir <- refl[["B11"]] / (refl[["B8A"]] + (s2bands["B11"] - s2bands["B8A"]) * (refl[["B12"]] - refl[["B8A"]]) / (s2bands["B12"] - s2bands["B8A"])) | |
406 spectralindices$CR_SWIR <- cr_swir | |
407 } | |
408 | |
409 if (stackout) | |
410 spectralindices <- raster::stack(spectralindices) | |
411 | |
412 res <- list("spectralindices" = spectralindices, "listindices" = listindices) | |
413 return(res) | |
414 } | |
415 | |
416 #" this function aims at computing spectral indices from Sensor reflectance data. | |
417 #" it computes the spectral indices based on their computation with Sentinel-2 | |
418 #" and assumes that the bands of the S2 data follow this order | |
419 #" wavelength = {496.6, 560.0, 664.5, 703.9, 740.2, 782.5, 835.1, 864.8, 1613.7, 2202.4} | |
420 #" Full description of the indices can be found here: | |
421 #" https://www.sentinel-hub.com/eotaxonomy/indices | |
422 #" | |
423 #" @param refl numeric. reflectance dataset defined in matrix | |
424 #" @param sel_indices list. list of spectral indices to be computed | |
425 #" @param sensorbands numeric. wavelength of the spectral bands corresponding to the spectral index | |
426 #" | |
427 #" @return list. includes | |
428 #" - spectralindices: List of spectral indices computed from the reflectance initially provided | |
429 #" - listindices: list of spectral indices computable with the function | |
430 #" @export | |
431 | |
432 computespectralindices_hs <- function(refl, sensorbands, sel_indices = "ALL") { | |
433 | |
434 spectralindices <- list() | |
435 s2bands <- data.frame("B2" = 496.6, "B3" = 560.0, "B4" = 664.5, "B5" = 703.9, "B6" = 740.2, | |
436 "B7" = 782.5, "B8" = 835.1, "B8A" = 864.8, "B11" = 1613.7, "B12" = 2202.4) | |
437 | |
438 sen2s2 <- get_closest_bands(sensorbands, s2bands) | |
439 indexall <- list() | |
440 # set zero vaues to >0 in order to avoid problems | |
441 selzero <- which(refl == 0) | |
442 refl[selzero] <- 0.005 | |
443 if (dim(refl)[1] == length(sensorbands)) { | |
444 refl <- t(refl) | |
445 } | |
446 | |
447 # inelegant but meeeeh | |
448 listindices <- list("ARI1", "ARI2", "ARVI", "BAI", "BAIS2", "CHL_RE", "CRI1", "CRI2", "EVI", "EVI2", | |
449 "GRVI1", "GNDVI", "IRECI", "LAI_SAVI", "MCARI", "mNDVI705", "MSAVI2", | |
450 "MSI", "mSR705", "MTCI", "nBR_RAW", "NDI_45", "NDII", "NDVI", "NDVI_G", | |
451 "NDVI705", "NDWI1", "NDWI2", "PSRI", "PSRI_NIR", "RE_NDVI", "RE_NDWI", "S2REP", | |
452 "SAVI", "SIPI", "SR", "CR_SWIR") | |
453 if (sel_indices == "ALL") { | |
454 sel_indices <- listindices | |
455 } | |
456 if ("ARI1" %in% sel_indices) { | |
457 ari1 <- (1 / refl[, sen2s2[["B3"]]]) - (1 / refl[, sen2s2[["B5"]]]) | |
458 spectralindices$ARI1 <- ari1 | |
459 } | |
460 if ("ARI2" %in% sel_indices) { | |
461 ari2 <- (refl[, sen2s2[["B8"]]] / refl[, sen2s2[["B2"]]]) - (refl[, sen2s2[["B8"]]] / refl[, sen2s2[["B3"]]]) | |
462 spectralindices$ARI2 <- ari2 | |
463 } | |
464 if ("ARVI" %in% sel_indices) { | |
465 arvi <- (refl[, sen2s2[["B8"]]] - (2 * refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B2"]]])) / (refl[, sen2s2[["B8"]]] + (2 * refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B2"]]])) | |
466 spectralindices$ARVI <- arvi | |
467 } | |
468 if ("BAI" %in% sel_indices) { | |
469 bai <- (1 / ((0.1 - refl[, sen2s2[["B4"]]])**2 + (0.06 - refl[, sen2s2[["B8"]]])**2)) | |
470 spectralindices$BAI <- bai | |
471 } | |
472 if ("BAIS2" %in% sel_indices) { | |
473 bais2 <- (1 - ((refl[, sen2s2[["B6"]]] * refl[, sen2s2[["B7"]]] * refl[, sen2s2[["B8A"]]]) / refl[, sen2s2[["B4"]]])**0.5) * ((refl[, sen2s2[["B12"]]] - refl[, sen2s2[["B8A"]]]) / ((refl[, sen2s2[["B12"]]] + refl[, sen2s2[["B8A"]]])**0.5) + 1) | |
474 spectralindices$BAIS2 <- bais2 | |
475 } | |
476 if ("CCCI" %in% sel_indices) { | |
477 ccci <- ((refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B5"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B5"]]])) / ((refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B4"]]])) | |
478 spectralindices$CCCI <- ccci | |
479 } | |
480 if ("CHL_RE" %in% sel_indices) { | |
481 chl_re <- refl[, sen2s2[["B5"]]] / refl[, sen2s2[["B8"]]] | |
482 spectralindices$CHL_RE <- chl_re | |
483 } | |
484 if ("CRI1" %in% sel_indices) { | |
485 cri1 <- (1 / refl[, sen2s2[["B2"]]]) - (1 / refl[, sen2s2[["B3"]]]) | |
486 spectralindices$CRI1 <- cri1 | |
487 } | |
488 if ("CRI2" %in% sel_indices) { | |
489 cri2 <- (1 / refl[, sen2s2[["B2"]]]) - (1 / refl[, sen2s2[["B5"]]]) | |
490 spectralindices$CRI2 <- cri2 | |
491 } | |
492 if ("EVI" %in% sel_indices) { | |
493 evi <- 2.5 * (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / ((refl[, sen2s2[["B8"]]] + 6 * refl[, sen2s2[["B4"]]] - 7.5 * refl[, sen2s2[["B2"]]] + 1)) | |
494 spectralindices$EVI <- evi | |
495 } | |
496 if ("EVI2" %in% sel_indices) { | |
497 evi2 <- 2.5 * (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B8"]]] + 2.4 * refl[, sen2s2[["B4"]]] + 1) | |
498 spectralindices$EVI2 <- evi2 | |
499 } | |
500 if ("GRVI1" %in% sel_indices) { | |
501 grvi1 <- (refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B3"]]]) / (refl[, sen2s2[["B4"]]] + refl[, sen2s2[["B3"]]]) | |
502 spectralindices$GRVI1 <- grvi1 | |
503 } | |
504 if ("GNDVI" %in% sel_indices) { | |
505 gndvi <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B3"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B3"]]]) | |
506 spectralindices$GNDVI <- gndvi | |
507 } | |
508 if ("IRECI" %in% sel_indices) { | |
509 ireci <- (refl[, sen2s2[["B7"]]] - refl[, sen2s2[["B4"]]]) * (refl[, sen2s2[["B6"]]] / (refl[, sen2s2[["B5"]]])) | |
510 spectralindices$IRECI <- ireci | |
511 } | |
512 if ("LAI_SAVI" %in% sel_indices) { | |
513 lai_savi <- - log(0.371 + 1.5 * (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B4"]]] + 0.5)) / 2.4 | |
514 spectralindices$LAI_SAVI <- lai_savi | |
515 } | |
516 if ("MCARI" %in% sel_indices) { | |
517 mcari <- (1 - 0.2 * (refl[, sen2s2[["B5"]]] - refl[, sen2s2[["B3"]]]) / (refl[, sen2s2[["B5"]]] - refl[, sen2s2[["B4"]]])) | |
518 spectralindices$MCARI <- mcari | |
519 } | |
520 if ("mNDVI705" %in% sel_indices) { | |
521 mndvi705 <- (refl[, sen2s2[["B6"]]] - refl[, sen2s2[["B5"]]]) / (refl[, sen2s2[["B6"]]] + refl[, sen2s2[["B5"]]] - 2 * refl[, sen2s2[["B2"]]]) | |
522 spectralindices$mNDVI705 <- mndvi705 | |
523 } | |
524 if ("MSAVI2" %in% sel_indices) { | |
525 msavi2 <- ((refl[, sen2s2[["B8"]]] + 1) - 0.5 * sqrt(((2 * refl[, sen2s2[["B8"]]]) - 1)**2 + 8 * refl[, sen2s2[["B4"]]])) | |
526 spectralindices$MSAVI2 <- msavi2 | |
527 } | |
528 if ("MSI" %in% sel_indices) { | |
529 msi <- refl[, sen2s2[["B11"]]] / refl[, sen2s2[["B8"]]] | |
530 spectralindices$MSI <- msi | |
531 } | |
532 if ("mSR705" %in% sel_indices) { | |
533 msr705 <- (refl[, sen2s2[["B6"]]] - refl[, sen2s2[["B2"]]]) / (refl[, sen2s2[["B5"]]] - refl[, sen2s2[["B2"]]]) | |
534 spectralindices$mSR705 <- msr705 | |
535 } | |
536 if ("MTCI" %in% sel_indices) { | |
537 mtci <- (refl[, sen2s2[["B6"]]] - refl[, sen2s2[["B5"]]]) / (refl[, sen2s2[["B5"]]] + refl[, sen2s2[["B4"]]]) | |
538 spectralindices$MTCI <- mtci | |
539 } | |
540 if ("nBR_RAW" %in% sel_indices) { | |
541 nbr_raw <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B12"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B12"]]]) | |
542 spectralindices$nBR_RAW <- nbr_raw | |
543 } | |
544 if ("NDI_45" %in% sel_indices) { | |
545 ndi_45 <- (refl[, sen2s2[["B5"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B5"]]] + refl[, sen2s2[["B4"]]]) | |
546 spectralindices$NDI_45 <- ndi_45 | |
547 } | |
548 if ("NDII" %in% sel_indices) { | |
549 ndii <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B11"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B11"]]]) | |
550 spectralindices$NDII <- ndii | |
551 } | |
552 if ("NDSI" %in% sel_indices) { | |
553 ndisi <- (refl[, sen2s2[["B3"]]] - refl[, sen2s2[["B11"]]]) / (refl[, sen2s2[["B3"]]] + refl[, sen2s2[["B11"]]]) | |
554 spectralindices$NDSI <- ndsi | |
555 } | |
556 if ("NDVI" %in% sel_indices) { | |
557 ndvi <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B4"]]]) | |
558 spectralindices$NDVI <- ndvi | |
559 } | |
560 if ("NDVI_G" %in% sel_indices) { | |
561 ndvi_g <- refl[, sen2s2[["B3"]]] * (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B4"]]]) | |
562 spectralindices$NDVI_G <- ndvi_g | |
563 } | |
564 if ("NDVI705" %in% sel_indices) { | |
565 ndvi705 <- (refl[, sen2s2[["B6"]]] - refl[, sen2s2[["B5"]]]) / (refl[, sen2s2[["B6"]]] + refl[, sen2s2[["B5"]]]) | |
566 spectralindices$NDVI705 <- ndvi705 | |
567 } | |
568 if ("NDWI1" %in% sel_indices) { | |
569 ndwi1 <- (refl[, sen2s2[["B8A"]]] - refl[, sen2s2[["B11"]]]) / (refl[, sen2s2[["B8A"]]] + refl[, sen2s2[["B11"]]]) | |
570 spectralindices$NDWI1 <- ndwi1 | |
571 } | |
572 if ("NDWI2" %in% sel_indices) { | |
573 ndwi2 <- (refl[, sen2s2[["B8A"]]] - refl[, sen2s2[["B12"]]]) / (refl[, sen2s2[["B8A"]]] + refl[, sen2s2[["B12"]]]) | |
574 spectralindices$NDWI2 <- ndwi2 | |
575 } | |
576 if ("PSRI" %in% sel_indices) { | |
577 psri <- (refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B2"]]]) / (refl[, sen2s2[["B5"]]]) | |
578 spectralindices$PSRI <- psri | |
579 } | |
580 if ("PSRI_NIR" %in% sel_indices) { | |
581 psri_nir <- (refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B2"]]]) / (refl[, sen2s2[["B8"]]]) | |
582 spectralindices$PSRI_NIR <- psri_nir | |
583 } | |
584 if ("RE_NDVI" %in% sel_indices) { | |
585 re_ndvi <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B6"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B6"]]]) | |
586 spectralindices$RE_NDVI <- re_ndvi | |
587 } | |
588 if ("RE_NDWI" %in% sel_indices) { | |
589 re_ndwi <- (refl[, sen2s2[["B4"]]] - refl[, sen2s2[["B6"]]]) / (refl[, sen2s2[["B4"]]] + refl[, sen2s2[["B6"]]]) | |
590 spectralindices$RE_NDWI <- re_ndwi | |
591 } | |
592 if ("S2REP" %in% sel_indices) { | |
593 s2rep <- 705 + 35 * (0.5 * (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B5"]]]) - refl[, sen2s2[["B6"]]]) / (refl[, sen2s2[["B7"]]] - refl[, sen2s2[["B6"]]]) | |
594 spectralindices$S2REP <- s2rep | |
595 } | |
596 if ("SAVI" %in% sel_indices) { | |
597 savi <- 1.5 * (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B5"]]]) / (refl[, sen2s2[["B8"]]] + refl[, sen2s2[["B5"]]] + 0.5) | |
598 spectralindices$SAVI <- savi | |
599 } | |
600 if ("SIPI" %in% sel_indices) { | |
601 sipi <- (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B2"]]]) / (refl[, sen2s2[["B8"]]] - refl[, sen2s2[["B4"]]]) | |
602 spectralindices$SIPI <- sipi | |
603 } | |
604 if ("SR" %in% sel_indices) { | |
605 sr <- refl[, sen2s2[["B8"]]] / refl[, sen2s2[["B4"]]] | |
606 spectralindices$SR <- sr | |
607 } | |
608 if ("CR_SWIR" %in% sel_indices) { | |
609 cr_swir <- refl[, sen2s2[["B11"]]] / (refl[, sen2s2[["B8A"]]] + (s2bands$B11 - s2bands$B8A) * (refl[, sen2s2[["B12"]]] - refl[, sen2s2[["B8A"]]]) / (s2bands$B12 - s2bands$B8A)) | |
610 spectralindices$CR_SWIR <- cr_swir | |
611 } | |
612 res <- list("spectralindices" = spectralindices, "listindices" = listindices) | |
613 return(res) | |
614 } | |
615 | |
616 #" this function identifies the bands of a given sensor with closest match to its spectral characteristics | |
617 #" | |
618 #" @param sensorbands numeric. wavelength in nanometer of the sensor of interest | |
619 #" @param listbands numeric or list. Named vector or list of spectral bands corresponding to sensor | |
620 #" | |
621 #" @return numeric. band numbers of original sensor | |
622 #" @export | |
623 get_closest_bands <- function(sensorbands, listbands) { | |
624 sapply(listbands, function(x) { | |
625 b <- which.min(abs(sensorbands - x)) | |
626 names(b) <- "" | |
627 b | |
628 }) | |
629 } | |
630 | |
631 #" This function computes interquartile range (IQR) criterion, which can be used | |
632 #" as a criterion for outlier detection | |
633 #" | |
634 #" @param distval numeric. vector of distribution of values | |
635 #" @param weightirq numeric. weighting factor appplied to IRQ to define lower and upper boudaries for outliers | |
636 #" | |
637 #" @return outlier_iqr numeric. band numbers of original sensor corresponding to S2 | |
638 #" @importFrom stats IQR quantile | |
639 #" @export | |
640 iqr_outliers <- function(distval, weightirq = 1.5) { | |
641 iqr <- IQR(distval, na.rm = TRUE) | |
642 range_iqr <- c(quantile(distval, 0.25, na.rm = TRUE), quantile(distval, 0.75, na.rm = TRUE)) | |
643 outlier_iqr <- c(range_iqr[1] - weightirq * iqr, range_iqr[2] + weightirq * iqr) | |
644 return(outlier_iqr) | |
645 } | |
646 | |
647 #" This function selects bands from a raster or stars object | |
648 #" | |
649 #" @param refl RasterBrick, RasterStack or list. Raster bands in the order of sensorbands. | |
650 #" @param bands numeric. rank of bands to be read in refl | |
651 #" @param reflfactor numeric. multiplying factor used to write reflectance in image ( == 10000 for S2) | |
652 #" | |
653 #" @return robj list. R object (default is raster, stars if refl is stars object) | |
654 #" @importFrom raster subset stack | |
655 #" @export | |
656 readrasterbands <- function(refl, bands, reflfactor = 1) { | |
657 | |
658 # get equation for line going from CR1 to CR2 | |
659 classraster <- class(refl) | |
660 if (classraster == "RasterBrick" || classraster == "RasterStack" || classraster == "stars") { | |
661 # if !reflfactor == 1 then apply a reflectance factor | |
662 if (classraster == "stars") { | |
663 robj <- refl[bands] | |
664 } else { | |
665 robj <- raster::subset(refl, bands) | |
666 } | |
667 if (!reflfactor == 1) { | |
668 robj <- robj / reflfactor | |
669 } | |
670 } else if (is.list(refl)) { | |
671 robj <- raster::stack(refl[bands]) # checks that all rasters have same crs/extent | |
672 if (!reflfactor == 1) { | |
673 robj <- robj / reflfactor | |
674 } | |
675 } else { | |
676 stop("refl is expected to be a RasterStack, RasterBrick, Stars object or a list of rasters") | |
677 } | |
678 return(robj) | |
679 } |