Mercurial > repos > ecology > srs_spectral_indices
diff comparison_div.r @ 0:a8dabbf47e15 draft
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
author | ecology |
---|---|
date | Mon, 09 Jan 2023 13:39:08 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/comparison_div.r Mon Jan 09 13:39:08 2023 +0000 @@ -0,0 +1,190 @@ +#Rscript + +########################################### +## Mapping alpha and beta diversity ## +########################################### + +#####Packages : stars +# utils +# biodivmapr +# raster +# sf +# mapview +# leafpop +# RColorBrewer +# labdsv +# rgdal +# ggplot2 +# gridExtra +##remotes::install_github("jbferet/biodivMapR") +#####Load arguments + +args <- commandArgs(trailingOnly = TRUE) + +#####Import the S2 data + +if (length(args) < 1) { + stop("This tool needs at least 1 argument") +}else { + data_raster <- args[1] + rasterheader <- args[2] + data <- args[3] + plots_zip <- args[4] + choice <- as.character(args[5]) + source(args[6]) + # type of PCA: + # PCA: no rescaling of the data + # SPCA: rescaling of the data + typepca <- as.character(args[7]) +} + +################################################################################ +## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ## +################################################################################ +if (data_raster == "") { + #Create a directory where to unzip your folder of data + dir.create("data_dir") + unzip(data, exdir = "data_dir") + # Path to raster + data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") + input_image_file <- file.path("data_dir/results/Reflectance", data_raster[1]) + input_header_file <- file.path("data_dir/results/Reflectance", data_raster[2]) + +} else { + input_image_file <- file.path(getwd(), data_raster, fsep = "/") + input_header_file <- file.path(getwd(), rasterheader, fsep = "/") +} + +################################################################################ +## PROCESS IMAGE ## +################################################################################ +# 1- Filter data in order to discard non vegetated / shaded / cloudy pixels + +print("PERFORM PCA ON RASTER") +pca_output <- biodivMapR::perform_PCA(Input_Image_File = input_image_file, Input_Mask_File = input_mask_file, + Output_Dir = output_dir, TypePCA = typepca, FilterPCA = filterpca, nbCPU = nbcpu, MaxRAM = maxram) + +pca_files <- pca_output$PCA_Files +pix_per_partition <- pca_output$Pix_Per_Partition +nb_partitions <- pca_output$nb_partitions +# path for the updated mask +input_mask_file <- pca_output$MaskPath + +# 3- Select principal components from the PCA raster +# Select components from the PCA/SPCA/MNF raster +sel_compo <- c("1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8") +image_name <- tools::file_path_sans_ext(basename(input_image_file)) +output_dir_full <- file.path(output_dir, image_name, typepca, "PCA") + +write.table(sel_compo, paste0(output_dir_full, "/Selected_Components.txt")) +sel_pc <- file.path(output_dir_full, "Selected_Components.txt") + + +################################################################################ +## MAP ALPHA AND BETA DIVERSITY ## +################################################################################ +print("MAP SPECTRAL SPECIES") + +kmeans_info <- biodivMapR::map_spectral_species(Input_Image_File = input_image_file, Output_Dir = output_dir, PCA_Files = pca_files, Input_Mask_File = input_mask_file, Pix_Per_Partition = pix_per_partition, nb_partitions = nb_partitions, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters, TypePCA = typepca) + +################################################################################ +## COMPUTE ALPHA AND BETA DIVERSITY FROM FIELD PLOTS ## +################################################################################ +## read selected features from dimensionality reduction + +## path for selected components + +# location of the directory where shapefiles used for validation are saved +dir.create("VectorDir") +unzip(plots_zip, exdir = "VectorDir") + +# list vector data +path_vector <- biodivMapR::list_shp("VectorDir") +name_vector <- tools::file_path_sans_ext(basename(path_vector)) + +# location of the spectral species raster needed for validation +path_spectralspecies <- kmeans_info$SpectralSpecies +# get diversity indicators corresponding to shapefiles (no partitioning of spectral dibversity based on field plots so far...) +biodiv_indicators <- biodivMapR::diversity_from_plots(Raster_SpectralSpecies = path_spectralspecies, Plots = path_vector, nbclusters = nbclusters, Raster_Functional = pca_files, Selected_Features = FALSE) + +shannon_rs <- c(biodiv_indicators$Shannon)[[1]] +fric <- c(biodiv_indicators$FunctionalDiversity$FRic) +feve <- c(biodiv_indicators$FunctionalDiversity$FEve) +fdiv <- c(biodiv_indicators$FunctionalDiversity$FDiv) +# if no name for plots +biodiv_indicators$Name_Plot <- seq(1, length(biodiv_indicators$Shannon[[1]]), by = 1) + + +#################################################### +# write RS indicators # +#################################################### +# write a table for Shannon index + +# write a table for all spectral diversity indices corresponding to alpha diversity +results <- data.frame(name_vector, biodiv_indicators$Richness, biodiv_indicators$Fisher, + biodiv_indicators$Shannon, biodiv_indicators$Simpson, + biodiv_indicators$FunctionalDiversity$FRic, + biodiv_indicators$FunctionalDiversity$FEve, + biodiv_indicators$FunctionalDiversity$FDiv) + +names(results) <- c("ID_Plot", "Species_Richness", "Fisher", "Shannon", "Simpson", "fric", "feve", "fdiv") +write.table(results, file = "Diversity.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) + +if (choice == "Y") { +# write a table for Bray Curtis dissimilarity +bc_mean <- biodiv_indicators$BCdiss +bray_curtis <- data.frame(name_vector, bc_mean) +colnames(bray_curtis) <- c("ID_Plot", bray_curtis[, 1]) +write.table(bray_curtis, file = "BrayCurtis.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) + +#################################################### +# illustrate results +#################################################### +# apply ordination using PCoA (same as done for map_beta_div) + +mat_bc_dist <- as.dist(bc_mean, diag = FALSE, upper = FALSE) +betapco <- labdsv::pco(mat_bc_dist, k = 3) + +# assign a type of vegetation to each plot, assuming that the type of vegetation +# is defined by the name of the shapefile + +nbsamples <- shpname <- c() +for (i in 1:length(path_vector)) { + shp <- path_vector[i] + nbsamples[i] <- length(rgdal::readOGR(shp, verbose = FALSE)) + shpname[i] <- tools::file_path_sans_ext(basename(shp)) +} + +type_vegetation <- c() +for (i in 1: length(nbsamples)) { + for (j in 1:nbsamples[i]) { + type_vegetation <- c(type_vegetation, shpname[i]) + } +} + +#data frame including a selection of alpha diversity metrics and beta diversity expressed as coordinates in the PCoA space +results <- data.frame("vgtype" = type_vegetation, "pco1" = betapco$points[, 1], "pco2" = betapco$points[, 2], "pco3" = betapco$points[, 3], "shannon" = shannon_rs, "fric" = fric, "feve" = feve, "fdiv" = fdiv) + +#plot field data in the PCoA space, with size corresponding to shannon index +g1 <- ggplot2::ggplot(results, ggplot2::aes(x = pco1, y = pco2, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) + +g2 <- ggplot2::ggplot(results, ggplot2::aes(x = pco1, y = pco3, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) + +g3 <- ggplot2::ggplot(results, ggplot2::aes(x = pco2, y = pco3, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) + +#extract legend +get_legend <- function(a_gplot) { + tmp <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(a_gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend) +} + +legend <- get_legend(g3) +gall <- gridExtra::grid.arrange(gridExtra::arrangeGrob(g1 + ggplot2::theme(legend.position = "none"), g2 + ggplot2::theme(legend.position = "none"), g3 + ggplot2::theme(legend.position = "none"), nrow = 1), legend, nrow = 2, heights = c(3, 2)) + + +filename <- ggplot2::ggsave("BetaDiversity_PcoA1_vs_PcoA2_vs_PcoA3.png", gall, scale = 0.65, width = 12, height = 9, units = "in", dpi = 200, limitsize = TRUE) + +filename +}