Mercurial > repos > ecology > srs_spectral_indices
view Lib_preprocess_S2.r @ 1:b40aba3d9e5c draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit 0f331043178bbfbe5cda0e31d887971464b3071c
author | ecology |
---|---|
date | Fri, 07 Apr 2023 14:41:13 +0000 |
parents | a8dabbf47e15 |
children |
line wrap: on
line source
# == == == == == == == == == == == == == == == == == == == == == == == == == == == # preprocS2 # Lib_preprocess_S2.R # == == == == == == == == == == == == == == == == == == == == == == == == == == == # PROGRAMMERS: # Jean-Baptiste FERET <jb.feret@teledetection.fr> # Copyright 2021/08 Jean-Baptiste FERET # == == == == == == == == == == == == == == == == == == == == == == == == == == == # This Library contains functions to preprocess Sentinel-2 images downloaded from # different data hubs, such as THEIA, PEPS or SCIHUB # == == == == == == == == == == == == == == == == == == == == == == == == == == == #" This function adjusts information from ENVI header #" #" @param dsn character. path where to store the stack #" @param bands list. should include "bandname", and if possible "wavelength" #" @param sensor character. Name of the sensor used to acquire the image #" @param stretch boolean. Set TRUE to get 10% stretching at display for reflectance, mentioned in hdr only #" #" @return None #" @importFrom utils read.table #" @importFrom raster hdr raster #" @export adjust_envi_hdr <- function(dsn, bands, sensor = "Unknown", stretch = FALSE) { # Edit hdr file to add metadata hdr <- read_envi_header(get_hdr_name(dsn)) hdr$`band names` <- bands$bandname if (length(bands$wavelength) == length(bands$bandname)) { hdr$wavelength <- bands$wavelength }else { hdr$wavelength <- NULL } if (stretch == TRUE) { hdr$`default stretch` <- "0.000000 1000.000000 linear" } hdr$`z plot range` <- NULL hdr$`data ignore value` <- "-Inf" hdr$`sensor type` <- sensor write_envi_header(hdr = hdr, hdrpath = get_hdr_name(dsn)) # remove unnecessary files file2remove <- paste(dsn, ".aux.xml", sep = "") if (file.exists(file2remove)) file.remove(file2remove) file2remove <- paste(dsn, ".prj", sep = "") if (file.exists(file2remove)) file.remove(file2remove) file2remove <- paste(dsn, ".stx", sep = "") if (file.exists(file2remove)) file.remove(file2remove) return(invisible()) } #" This function saves reflectance files #" #" @param s2sat character. Sentinel-2 mission ("2A" or "2B") #" @param tile_s2 character. S2 tile name (2 numbers + 3 letters) #" @param dateacq_s2 double. date of acquisition #" #" @return s2mission character. name of the S2 mission (2A or 2B) #" @importFrom sen2r safe_getMetadata check_scihub_connection s2_list #" @export check_s2mission <- function(s2sat, tile_s2, dateacq_s2) { # is mission already defined by user? if (!is.null(s2sat)) { if (s2sat == "2A") { s2mission <- "2A" }else if (s2sat == "2B") { s2mission <- "2B" }else { message("Could not identify if image from Sentinel-2A or -2B") message("Defining central wavelength of spectral bands based on S2A") s2mission <- "2A" } }else { message("Could not identify if image from Sentinel-2A or -2B") message("Defining central wavelength of spectral bands based on S2A") s2mission <- "2A" } return(s2mission) } #" this function aims at computing directory size #" @param path character. path for directory #" @param recursive boolean . set T if recursive #" #" @return size_files numeric. size in bytes #" - image stack #" - path for individual band files corresponding to the stack #" - path for vector (reprojected if needed) #" #" @importFrom raster raster #" @importFrom tools file_path_sans_ext file_ext #" @export dir_size <- function(path, recursive = TRUE) { stopifnot(is.character(path)) files <- list.files(path, full.names = TRUE, recursive = recursive) vect_size <- sapply(files, function(x) file.size(x)) size_files <- sum(vect_size) return(size_files) } #" This function reads S2 data from L2A directories downloaded from #" various data hubs including THEIA, PEPS & SCIHUB (SAFE format & LaSRC) #" @param path_dir_s2 character. path for S2 directory #" @param path_vector character. path for vector file #" @param s2source character. type of directory format (depends on atmospheric correction: SAFE produced from Sen2Cor) #" @param resolution numeric. buffer applied to vector file (in meters) #" @param interpolation character. method for resampling. default = "bilinear" #" @param fre_sre character. SRE or FRE products from THEIA #" #" @return listout list. #" - image stack #" - path for individual band files corresponding to the stack #" - path for vector (reprojected if needed) #" #" @importFrom raster raster #" @importFrom tools file_path_sans_ext file_ext #" @export extract_from_s2_l2a <- function(path_dir_s2, path_vector = NULL, s2source = "SAFE", resolution = 10, interpolation = "bilinear", fre_sre = "FRE") { # Get list of paths corresponding to S2 bands and depending on S2 directory s2_bands <- get_s2_bands(path_dir_s2 = path_dir_s2, s2source = s2source, resolution = resolution, fre_sre = fre_sre) if (length(s2_bands$s2bands_10m) > 0) { rastmp <- raster::raster(s2_bands$s2bands_10m[[1]]) } else if (length(s2_bands$s2bands_20m) > 0) { rastmp <- raster::raster(s2_bands$s2bands_20m[[1]]) } # check if vector and raster share the same projection. if not, re-project vector if (!is.null(path_vector)) { raster_proj <- raster::projection(rastmp) path_vector_reproj <- paste(tools::file_path_sans_ext(path_vector), "_reprojected.shp", sep = "") path_vector <- reproject_shp(path_vector_init = path_vector, newprojection = raster_proj, path_vector_reproj = path_vector_reproj) } # Extract data corresponding to the vector footprint (if provided) & resample data if needed if (length(s2_bands$s2bands_10m) > 0) { stack_10m <- read_s2bands(s2_bands = s2_bands$s2bands_10m, path_vector = path_vector, resampling = 1, interpolation = interpolation) } if (length(s2_bands$s2bands_20m) > 0) { if (resolution == 10 && s2source != "LaSRC") { resampling <- 2 }else { resampling <- 1 } stack_20m <- read_s2bands(s2_bands = s2_bands$s2bands_20m, path_vector = path_vector, resampling = resampling, interpolation = interpolation) } # get full stack including 10m and 20m spatial resolution if (length(s2_bands$s2bands_10m) > 0 && length(s2_bands$s2bands_20m) > 0) { diffxstart <- attributes(stack_10m)$dimensions[[1]]$from - attributes(stack_20m)$dimensions[[1]]$from diffxstop <- attributes(stack_10m)$dimensions[[1]]$to - attributes(stack_20m)$dimensions[[1]]$to diffystart <- attributes(stack_10m)$dimensions[[2]]$from - attributes(stack_20m)$dimensions[[2]]$from diffystop <- attributes(stack_10m)$dimensions[[2]]$to - attributes(stack_20m)$dimensions[[2]]$to if (!diffxstop == 0) { # size of 20m > size of 10m --> reduce 20m # size of 10m > size of 20m --> reduce 10m if (diffxstop > 0) { stack_10m <- stack_10m[, 1:(dim(stack_10m)[1] - diffxstop), , ] }else if (diffxstop < 0) { stack_20m <- stack_20m[, 1:(dim(stack_20m)[1] + diffxstop), , ] } } if (!diffystop == 0) { if (diffystop > 0) { stack_10m <- stack_10m[, , 1:(dim(stack_10m)[2] - diffystop), ] }else if (diffystop < 0) { stack_20m <- stack_20m[, , 1:(dim(stack_20m)[2] + diffystop), ] } } if (!diffxstart == 0) { if (diffxstart > 0) { stack_20m <- stack_20m[, (1 + diffxstart):dim(stack_20m)[1], , ] }else if (diffxstart < 0) { stack_10m <- stack_10m[, (1 - diffxstart):dim(stack_10m)[1], , ] } } if (!diffystart == 0) { if (diffystart > 0) { stack_20m <- stack_20m[, , (1 + diffystart):dim(stack_20m)[2], ] }else if (diffystart < 0) { stack_10m <- stack_10m[, , (1 - diffystart):dim(stack_10m)[2], ] } } # reorder bands with increasing wavelength s2bands <- c("B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12", "Cloud") namebands <- c(names(s2_bands$s2bands_10m), names(s2_bands$s2bands_20m)) reorder_bands <- match(s2bands, namebands) namebands <- namebands[reorder_bands] listfiles <- c(stack_10m$attr, stack_20m$attr)[reorder_bands] # adjust size to initial vector footprint without buffer # --> buffer is needed in order to ensure that extraction following # footprint of vector matches for images of different spatial resolution # get bounding box corresponding to footprint of image or image subset bb_xycoords <- get_bb(path_raster = listfiles[1], path_vector = path_vector, buffer = 0) # prepare reading data for extent defined by bounding box nxoff <- bb_xycoords$UL$col nyoff <- bb_xycoords$UL$row nxsize <- bb_xycoords$UR$col - bb_xycoords$UL$col + 1 nysize <- bb_xycoords$LR$row - bb_xycoords$UR$row + 1 nbufxsize <- nxsize nbufysize <- nysize s2_stack <- stars::read_stars(listfiles, along = "band", RasterIO = list(nXOff = nxoff, nYOff = nyoff, nXSize = nxsize, nYSize = nysize, nBufXSize = nbufxsize, nBufYSize = nbufysize, resample = "nearest_neighbour"), proxy = TRUE) names(s2_stack$attr) <- namebands }else if (length(s2_bands$s2bands_10m) > 0) { s2_stack <- stack_10m namebands <- names(s2_bands$s2bands_10m) names(s2_stack$attr) <- namebands }else if (length(s2_bands$s2bands_20m) > 0) { s2_stack <- stack_20m namebands <- names(s2_bands$s2bands_20m) names(s2_stack$attr) <- namebands } listout <- list("s2_stack" = s2_stack, "s2_bands" = s2_bands, "path_vector" = path_vector, "namebands" = namebands) return(listout) } #" This function gets coordinates of a bounding box defined by a vector (optional) and a raster #" #" @param path_raster character. path for raster file #" @param path_vector character. path for vector file #" @param buffer numeric. buffer applied to vector file (in meters) #" #" @return bb_xycoords list. Coordinates (in pixels) of the upper/lower right/left corners of bounding box #" @export get_bb <- function(path_raster, path_vector = NULL, buffer = 0) { if (!is.null(path_vector)) { # get bounding box with a 50m buffer in order to allow for interpolation bb_xycoords <- get_bb_from_vector(path_raster = path_raster, path_vector = path_vector, buffer = buffer) }else if (is.null(path_vector)) { bb_xycoords <- get_bb_from_fullimage(path_raster) } return(bb_xycoords) } #" This function gets extreme coordinates of a bounding box corresponding to a full image #" #" @param path_raster character. path for raster file #" #" @return bb_xycoords list. Coordinates (in pixels) of the upper/lower right/left corners of bounding box #" @importFrom raster raster #" @export get_bb_from_fullimage <- function(path_raster) { # get raster coordinates corresponding to Full image rasterobj <- raster::raster(path_raster) bb_xycoords <- list() bb_xycoords[["UL"]] <- data.frame("row" = 1, "col" = 1) bb_xycoords[["UR"]] <- data.frame("row" = 1, "col" = dim(rasterobj)[2]) bb_xycoords[["LL"]] <- data.frame("row" = dim(rasterobj)[1], "col" = 1) bb_xycoords[["LR"]] <- data.frame("row" = dim(rasterobj)[1], "col" = dim(rasterobj)[2]) return(bb_xycoords) } #" This gets bounding box corresponding to a vector from a raster (UL, UR, LL, LR corners) #" #" @param path_raster character. path for raster file #" @param path_vector character. path for vector file #" @param buffer numeric. buffer applied to vector file (in meters) #" #" @return bb_xycoords list. Coordinates (in pixels) of the upper/lower right/left corners of bounding box #" @importFrom sf st_read st_bbox st_crop #" @importFrom rgeos gbuffer bbox2SP #" @importFrom sp SpatialPoints bbox #" @importFrom raster projection extract extent raster #" @importFrom methods as #" @export get_bb_from_vector <- function(path_raster, path_vector, buffer = 0) { data_raster <- raster::raster(path_raster) # extract BB coordinates from vector bb_vector <- rgeos::gbuffer(spgeom = as(sf::st_read(dsn = path_vector, quiet = TRUE), "Spatial"), width = buffer, byid = TRUE) # extract BB coordinates from raster bb_raster <- rgeos::bbox2SP(bbox = bbox(data_raster)) # compute intersection intersect <- rgeos::gIntersection(bb_vector, bb_raster) bbext <- raster::extent(intersect) xmin <- bbext[1] xmax <- bbext[2] ymin <- bbext[3] ymax <- bbext[4] # get coordinates of bounding box corresponding to vector corners <- list() corners[["UR"]] <- sp::SpatialPoints(coords = cbind(xmax, ymax)) corners[["LR"]] <- sp::SpatialPoints(coords = cbind(xmax, ymin)) corners[["UL"]] <- sp::SpatialPoints(coords = cbind(xmin, ymax)) corners[["LL"]] <- sp::SpatialPoints(coords = cbind(xmin, ymin)) raster::projection(corners[["UL"]]) <- raster::projection(corners[["UR"]]) <- raster::projection(corners[["LL"]]) <- raster::projection(corners[["LR"]]) <- raster::projection(sf::st_read(dsn = path_vector, quiet = TRUE)) # get coordinates for corners of bounding box bb_xycoords <- list() for (corner in names(corners)) { ex_df <- as.data.frame(raster::extract(data_raster, corners[[corner]], cellnumbers = TRUE)) colrow <- ind2sub(data_raster, ex_df$cell) bb_xycoords[[corner]] <- data.frame("row" = colrow$row, "col" = colrow$col) } return(bb_xycoords) } #" get hdr name from image file name, assuming it is BIL format #" #" @param impath path of the image #" #" @return corresponding hdr #" @import tools #" @export get_hdr_name <- function(impath) { if (tools::file_ext(impath) == "") { impathhdr <- paste(impath, ".hdr", sep = "") }else if (tools::file_ext(impath) == "bil") { impathhdr <- gsub(".bil", ".hdr", impath) }else if (tools::file_ext(impath) == "zip") { impathhdr <- gsub(".zip", ".hdr", impath) }else { impathhdr <- paste(tools::file_path_sans_ext(impath), ".hdr", sep = "") } if (!file.exists(impathhdr)) { message("WARNING : COULD NOT FIND hdr FILE") print(impathhdr) message("Process may stop") } return(impathhdr) } #" This function returns path for the spectral bands to be used #" #" @param path_dir_s2 character. Path for the directory containing S2 data. either L2A .SAFE S2 file or THEIA directory #" @param s2source character. defines if data comes from SciHub as SAFE directory, from THEIA or from LaSRC #" @param resolution numeric. spatial resolution of the final image: 10m or 20m #" @param fre_sre character. SRE or FRE products from THEIA #" #" @return listbands list. contains path for spectral bands corresponding to 10m and 20m resolution #" @export get_s2_bands <- function(path_dir_s2, s2source = "SAFE", resolution = 10, fre_sre = "FRE") { if (s2source == "SAFE" || s2source == "Sen2Cor") { listbands <- get_s2_bands_from_sen2cor(path_dir_s2 = path_dir_s2, resolution = resolution) }else if (s2source == "THEIA") { listbands <- get_s2_bands_from_theia(path_dir_s2 = path_dir_s2, resolution = resolution, fre_sre = fre_sre) }else if (s2source == "LaSRC") { listbands <- get_s2_bands_from_lasrc(path_dir_s2 = path_dir_s2, resolution = resolution) }else { message("The data source (Atmospheric correction) for Sentinel-2 image is unknown") message("Please provide S2 images from one of the following data sources:") message("- LaSRC (atmospheric correction: LaSRC)") message("- THEIA (atmospheric correction: MAJA)") message("- SAFE (atmospheric correction: Sen2Cor)") s2bands_10m <- s2bands_20m <- granule <- mtdfile <- metadata_msi <- metadata_lasrc <- NULL listbands <- list("s2bands_10m" = s2bands_10m, "s2bands_20m" = s2bands_20m, "GRANULE" = granule, "metadata" = mtdfile, "metadata_MSI" = metadata_msi, "metadata_lasrc" = metadata_lasrc) } return(listbands) } #" This function returns path for the spectral bands in SAFE / sen2Cor directory #" #" @param path_dir_s2 character. Path for the SAFE directory containing S2 data #" @param resolution numeric. spatial resolution of the final image: 10m or 20m #" #" @return listbands list. contains path for spectral bands corresponding to 10m and 20m resolution, as well name of as granule #" @export get_s2_bands_from_sen2cor <- function(path_dir_s2, resolution = 10) { # build path for all bands if (resolution == 10) { b10m <- c("B02", "B03", "B04", "B08") b20m <- c("B05", "B06", "B07", "B8A", "B11", "B12") }else { b10m <- c() b20m <- c("B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12") } # get granule directory & path for corresponding metadata XML file granule <- list.dirs(list.dirs(path_dir_s2, recursive = FALSE)[grep(pattern = "GRANULE", x = list.dirs(path_dir_s2, recursive = FALSE))], recursive = FALSE) mtdfile <- file.path(granule, "MTD_TL.xml") if (file.exists(file.path(path_dir_s2, "MTD_MSIL2A.xml"))) { mtd_msi_file <- file.path(path_dir_s2, "MTD_MSIL2A.xml") } else { mtd_msi_file <- NULL } # Define path for bands s2bands_20m_dir <- file.path(granule, "IMG_DATA", "R20m") s2bands_10m_dir <- file.path(granule, "IMG_DATA", "R10m") s2bands_10m <- s2bands_20m <- list() for (band in b20m) { s2bands_20m[[band]] <- file.path(s2bands_20m_dir, list.files(s2bands_20m_dir, pattern = band)) } for (band in b10m) { s2bands_10m[[band]] <- file.path(s2bands_10m_dir, list.files(s2bands_10m_dir, pattern = band)) } # get cloud mask cloud <- "MSK_CLDPRB_20m" cloud_20m_dir <- file.path(granule, "QI_DATA") s2bands_20m[["Cloud"]] <- file.path(cloud_20m_dir, list.files(cloud_20m_dir, pattern = cloud)) listbands <- list("s2bands_10m" = s2bands_10m, "s2bands_20m" = s2bands_20m, "GRANULE" = granule, "metadata" = mtdfile, "metadata_MSI" = mtd_msi_file, "metadata_lasrc" = NULL) return(listbands) } #" This function returns path for the spectral bands in LaSRC directory #" #" @param path_dir_s2 character. Path for the SAFE directory containing S2 data #" @param resolution numeric. spatial resolution of the final image: 10m or 20m #" #" @return listbands list. contains path for spectral bands corresponding to 10m and 20m resolution, as well name of as granule #" @importFrom stringr str_subset #" @export get_s2_bands_from_lasrc <- function(path_dir_s2, resolution = 10) { # get granule directory & path for corresponding metadata XML file granule <- path_dir_s2 mtdfile <- file.path(granule, "MTD_TL.xml") if (file.exists(file.path(path_dir_s2, "MTD_MSIL1C.xml"))) { mtd_msi_file <- file.path(path_dir_s2, "MTD_MSIL1C.xml") } else { mtd_msi_file <- NULL } # build path for all bands b10m <- c("band2", "band3", "band4", "band5", "band6", "band7", "band8", "band8a", "band11", "band12") b10m_standard <- c("B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12") # Define path for bands s2bands_10m <- s2bands_20m <- list() for (i in 1:seq_along(b10m)) { s2bands_10m[[b10m_standard[i]]] <- file.path(path_dir_s2, list.files(path_dir_s2, pattern = paste(b10m[i], ".tif", sep = ""))) } # get metadata file containing offset mtd_lasrc <- str_subset(list.files(path_dir_s2, pattern = "S2"), ".xml$") if (file.exists(file.path(path_dir_s2, mtd_lasrc))) { metadata_lasrc <- file.path(path_dir_s2, mtd_lasrc) } else { metadata_lasrc <- NULL } # get cloud mask cloud <- "CLM" s2bands_10m[["Cloud"]] <- file.path(path_dir_s2, list.files(path_dir_s2, pattern = cloud)) listbands <- list("s2bands_10m" = s2bands_10m, "s2bands_20m" = s2bands_20m, "GRANULE" = granule, "metadata" = mtdfile, "metadata_MSI" = mtd_msi_file, "metadata_lasrc" = metadata_lasrc) return(listbands) } #" This function returns path for the spectral bands in THEIA directory #" #" @param path_dir_s2 character. Path for the SAFE directory containing S2 data #" @param resolution numeric. spatial resolution of the final image: 10m or 20m #" @param fre_sre character. SRE or FRE products from THEIA #" #" @return listbands list. contains path for spectral bands corresponding to 10m and 20m resolution, as well name of as granule #" @export get_s2_bands_from_theia <- function(path_dir_s2, resolution = 10, fre_sre = "FRE") { # build path for all bands if (resolution == 10) { b10m <- c("B02", "B03", "B04", "B08") b20m <- c("B05", "B06", "B07", "B8A", "B11", "B12") } else { b10m <- c() b20m <- c("B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12") } # get path_tile_s2 directory & path for corresponding metadata XML file path_tile_s2 <- list.dirs(path_dir_s2, recursive = FALSE) files_tile_s2 <- list.files(path_tile_s2, recursive = FALSE) mtdfile <- file.path(path_tile_s2, files_tile_s2[grep(pattern = "MTD_ALL.xml", x = files_tile_s2)]) # Define path for bands s2bands_10m_dir <- s2bands_20m_dir <- path_tile_s2 s2bands_10m <- s2bands_20m <- list() for (band in b20m) { band_20m_pattern <- paste0(gsub("0", "", band), ".tif") # for THEAI band 2 is "B2" ("B02" for SAFE) list_files_20m <- list.files(s2bands_20m_dir, pattern = band_20m_pattern) s2bands_20m[[band]] <- file.path(s2bands_20m_dir, list_files_20m)[grep(pattern = fre_sre, x = file.path(s2bands_20m_dir, list_files_20m))] } for (band in b10m) { band_10m_pattern <- paste0(gsub("0", "", band), ".tif") # for THEAI band 2 is "B2" ("B02" for SAFE) list_files_10m <- list.files(s2bands_10m_dir, pattern = band_10m_pattern) s2bands_10m[[band]] <- file.path(s2bands_10m_dir, list_files_10m)[grep(pattern = fre_sre, x = file.path(s2bands_10m_dir, list_files_10m))] } # get cloud mask 10m cloud_10m <- "CLM_R1" cloud_10m_dir <- file.path(path_tile_s2, "MASKS") s2bands_10m[["Cloud"]] <- file.path(cloud_10m_dir, list.files(cloud_10m_dir, pattern = cloud_10m)) # get cloud mask 20m cloud_20m <- "CLM_R2" cloud_20m_dir <- file.path(path_tile_s2, "MASKS") s2bands_20m[["Cloud"]] <- file.path(cloud_20m_dir, list.files(cloud_20m_dir, pattern = cloud_20m)) # return list bands listbands <- list("s2bands_10m" = s2bands_10m, "s2bands_20m" = s2bands_20m, "path_tile_s2" = path_tile_s2, "metadata" = mtdfile) return(listbands) } #" This function check S2 data level: #" - L2A: already atmospherically corrected #" - L1C: requires atmospheric corrections with sen2cor #" #" @param prodname character. original name for the S2 image #" #" @return s2level character. S2 level: L1C or L2A #" @export get_s2_level <- function(prodname) { prodname <- basename(prodname) if (length(grep(pattern = "L1C_", x = prodname)) == 1) { s2level <- "L1C" } else if (length(grep(pattern = "L2A_", x = prodname)) == 1) { s2level <- "L2A" } return(s2level) } #" This function gets tile from S2 image #" #" @param prodname character. original name for the S2 image #" #" @return tilename character #" @importFrom tools file_path_sans_ext #" @export get_tile <- function(prodname) { prodname <- basename(prodname) tilename <- tools::file_path_sans_ext(gsub("_.*", "", gsub(".*_T", "", prodname))) return(tilename) } #" This function gets acquisition date from S2 image #" #" @param prodname character. original name for the S2 image #" #" @return dateacq character #" @export get_date <- function(prodname) { prodname <- basename(prodname) dateacq <- as.Date(gsub("T.*", "", gsub(".*_20", "20", prodname)), format = "%Y%m%d") return(dateacq) } #" download S2 L1C data from Copernicus hub or Google cloud #" #" @param list_safe safe object. produced with sen2r::s2_list #" @param l1c_path character. path for storage of L1C image #" @param path_vector path for a vector file #" @param time_interval dates. time interval for S2 query #" @param googlecloud boolean. set to TRUE if google cloud SDK is installed and #" @param forcegoogle boolean. set to TRUE if only google requested #" sen2r configured as an alternative hub for S2 download #" #" @return prodname character. S2 Product name #" @importFrom sen2r safe_is_online s2_list s2_download s2_order check_gcloud #" @export get_s2_l1c_image <- function(list_safe, l1c_path, path_vector, time_interval, googlecloud = FALSE, forcegoogle = FALSE) { # Check if available from Copernicus hub first copernicus_avail <- sen2r::safe_is_online(list_safe) # if available: download prodname <- attr(list_safe, which = "name") if (file.exists(file.path(l1c_path, prodname))) { message("L1C file already downloaded") message(file.path(l1c_path, prodname)) } else { if (copernicus_avail == TRUE && forcegoogle == FALSE) { sen2r::s2_download(list_safe, outdir = l1c_path) } else if (copernicus_avail == FALSE || forcegoogle == TRUE) { # if not available and googlecloud==TRUE if (googlecloud == TRUE) { # check if google cloud SDK available from this computer ggc <- sen2r::check_gcloud() if (ggc == TRUE) { message("downloading from Google cloud") list_safe_ggc <- sen2r::s2_list(spatial_extent = sf::st_read(dsn = path_vector), time_interval = time_interval, server = "gcloud") prodname <- attr(list_safe_ggc, which = "name") if (file.exists(file.path(l1c_path, prodname))) { message("L1C file already downloaded") message(file.path(l1c_path, prodname)) } else { sen2r::s2_download(list_safe_ggc, outdir = l1c_path) # check if QI_DATA exists in DATASTRIP, and create it if not the case datastrip_path <- file.path(l1c_path, prodname, "DATASTRIP") dsdir <- list.dirs(datastrip_path, recursive = FALSE) if (length(match(list.dirs(dsdir, recursive = FALSE, full.names = FALSE), "QI_DATA")) == 0) { dir.create(file.path(dsdir, "QI_DATA")) } } } else if (ggc == FALSE) { message("googlecloud set to TRUE but missing") message("Please install Google cloud SDK") message("https://cloud.google.com/sdk/docs/install") message("and/or set configuration of sen2r following instructions") message("https://www.r-bloggers.com/2021/06/downloading-sentinel-2-archives-from-google-cloud-with-sen2r/") } } } if (copernicus_avail == FALSE && googlecloud == FALSE) { message("S2 image in Long Term Archive (LTA)") message("Ordering image from LTA") message("This may take 1 day, please run your script later") orders2 <- sen2r::s2_order(list_safe) message("An alternative is possible with Google cloud SDK") message("https://cloud.google.com/sdk/docs/install") message("and/or set configuration of sen2r following instructions") message("https://www.r-bloggers.com/2021/06/downloading-sentinel-2-archives-from-google-cloud-with-sen2r/") } } return(prodname) } #" download S2 L2A data from Copernicus hub or convert L1C to L2A #" #" @param l2a_path character. path for storage of L2A image #" @param spatial_extent path for a vector file #" @param dateacq character. date of acquisition #" @param deletel1c Boolean. set TRUE to delete L1C images #" @param Sen2Cor Boolean. set TRUE to automatically perform atmospheric corrections using sen2Cor #" @param googlecloud boolean. set to TRUE if google cloud SDK is installed and #" sen2r configured as an alternative hub for S2 download #" #" @return pathl2a character. Path for L2A image #" @importFrom sen2r s2_list s2_download #" @importFrom R.utils getAbsolutePath #" @export get_s2_l2a_image <- function(l2a_path, spatial_extent, dateacq, deletel1c = FALSE, sen2cor = TRUE, googlecloud = FALSE) { # Needs to be updated: define path for L1c data l1c_path <- l2a_path # define time interval time_interval <- as.Date(c(dateacq, dateacq)) # get list S2 products corresponding to study area and date of interest using sen2r package if (googlecloud == TRUE) { server <- c("scihub", "gcloud") } else if (googlecloud == FALSE) { server <- "scihub" } list_safe <- sen2r::s2_list(spatial_extent = sf::st_read(dsn = spatial_extent), time_interval = time_interval, server = server, availability = "check") # download products sen2r::s2_download(list_safe, outdir = l2a_path) # name all products prodname <- attr(list_safe, which = "name") prodfullpath <- file.path(l2a_path, prodname) if (sen2cor == TRUE) { for (imgname in prodname) { s2level <- get_s2_level(imgname) if (s2level == "L1C") { datepattern <- gsub(pattern = "-", replacement = "", x = dateacq) pathl2a <- s2_from_l1c_to_l2a(prodname = imgname, l1c_path = l2a_path, l2a_path = l2a_path, datepattern = datepattern, tmp_path = NULL) if (deletel1c == TRUE) { unlink(x = R.utils::getAbsolutePath(file.path(l1c_path, prodname)), recursive = TRUE, force = TRUE) # delete from full path and add atmospherically corrected whichimg <- grep(x = prodfullpath, pattern = imgname) dateacq <- get_date(imgname) tilename <- get_tile(imgname) pathl2a <- list.files(path = l2a_path, pattern = tilename, full.names = TRUE) pathl2a <- pathl2a[grep(x = pathl2a, pattern = dateacq)] pathl2a <- pathl2a[grep(x = basename(pathl2a), pattern = "L2A")] prodfullpath[whichimg] <- pathl2a } } } } return(prodfullpath) } #" convert image coordinates from index to X-Y #" #" @param Raster image raster object #" @param image_index coordinates corresponding to the raster ind2sub <- function(data_raster, image_index) { c <- ((image_index - 1) %% data_raster@ncols) + 1 r <- floor((image_index - 1) / data_raster@ncols) + 1 my_list <- list("col" = c, "row" = r) return(my_list) } #" mosaicing a set of rasters #" #" @param list_rasters character. list of paths corresponding to rasters to mosaic #" @param dst_mosaic character. path and name of mosaic produced #" @param stretch boolean. Set TRUE to get 10% stretching at display for reflectance, mentioned in hdr only #" #" @return None #" @importFrom gdalUtils mosaic_rasters #" @importFrom raster hdr raster #" @export mosaic_rasters <- function(list_rasters, dst_mosaic, stretch = FALSE) { # produce mosaic gdalUtils::mosaic_rasters(gdalfile = list_rasters, dst_dataset = dst_mosaic, separate = FALSE, of = "Ehdr", verbose = TRUE) # convert hdr to ENVI format raster::hdr(raster(dst_mosaic), format = "ENVI") # add info to hdr based on initial rasters hdr_init <- read_envi_header(get_hdr_name(list_rasters[1])) hdr <- read_envi_header(get_hdr_name(dst_mosaic)) hdr$`band names` <- hdr_init$`band names` hdr$wavelength <- hdr_init$wavelength if (stretch == TRUE) { hdr$`default stretch` <- "0.000000 1000.000000 linear" } hdr$`z plot range` <- NULL hdr$`data ignore value` <- "-Inf" hdr$`sensor type` <- hdr_init$`sensor type` hdr$`coordinate system string` <- read.table(paste(file_path_sans_ext(dst_mosaic), ".prj", sep = "")) write_envi_header(hdr = hdr, hdrpath = get_hdr_name(dst_mosaic)) return(invisible()) } #" Reads ENVI hdr file #" #" @param hdrpath Path of the hdr file #" #" @return list of the content of the hdr file #" @export read_envi_header <- function(hdrpath) { if (!grepl(".hdr$", hdrpath)) { stop("File extension should be .hdr") } hdr <- readLines(hdrpath) ## check ENVI at beginning of file if (!grepl("ENVI", hdr[1])) { stop("Not an ENVI header (ENVI keyword missing)") } else { hdr <- hdr [-1] } ## remove curly braces and put multi-line key-value-pairs into one line hdr <- gsub("\\{([^}]*)\\}", "\\1", hdr) l <- grep("\\{", hdr) r <- grep("\\}", hdr) if (length(l) != length(r)) { stop("Error matching curly braces in header (differing numbers).") } if (any(r <= l)) { stop("Mismatch of curly braces in header.") } hdr[l] <- sub("\\{", "", hdr[l]) hdr[r] <- sub("\\}", "", hdr[r]) for (i in rev(seq_along(l))) { hdr <- c( hdr [seq_len(l [i] - 1)], paste(hdr [l [i]:r [i]], collapse = "\n"), hdr [-seq_len(r [i])] ) } ## split key = value constructs into list with keys as names hdr <- sapply(hdr, split_line, "=", USE.NAMES = FALSE) names(hdr) <- tolower(names(hdr)) ## process numeric values tmp <- names(hdr) %in% c( "samples", "lines", "bands", "header offset", "data type", "byte order", "default bands", "data ignore value", "wavelength", "fwhm", "data gain values" ) hdr [tmp] <- lapply(hdr [tmp], function(x) { as.numeric(unlist(strsplit(x, ", "))) }) return(hdr) } #" This function reads a list of files corresponding to S2 bands #" S2 bands are expected to have uniform spatial resolution and footprint #" @param s2_bands list. list of S2 bands obtained from get_s2_bands #" @param path_vector path for a vector file #" @param resampling numeric. resampling factor (default = 1, set to resampling = 2 to convert 20m into 10m resolution) #" @param interpolation character. method for resampling. default = "bilinear" #" #" @return stack_s2 list. contains stack of S2 bands #" #" @importFrom stars read_stars #" @importFrom sf st_bbox st_read st_crop #" @export read_s2bands <- function(s2_bands, path_vector = NULL, resampling = 1, interpolation = "bilinear") { # get bounding box corresponding to footprint of image or image subset bb_xycoords <- get_bb(path_raster = s2_bands[[1]], path_vector = path_vector, buffer = 50) # prepare reading data for extent defined by bounding box nxoff <- bb_xycoords$UL$col nyoff <- bb_xycoords$UL$row nxsize <- bb_xycoords$UR$col - bb_xycoords$UL$col + 1 nysize <- bb_xycoords$LR$row - bb_xycoords$UR$row + 1 nbufxsize <- resampling * nxsize nbufysize <- resampling * nysize if (resampling == 1) { interpolation <- "nearest_neighbour" } # write interpolated individual bands in temp directory tmpdir <- tempdir() tmpfile <- list() for (band in names(s2_bands)) { stack_s2_tmp <- stars::read_stars(s2_bands[[band]], along = "band", RasterIO = list(nXOff = nxoff, nYOff = nyoff, nXSize = nxsize, nYSize = nysize, nBufXSize = nbufxsize, nBufYSize = nbufysize, resample = interpolation), proxy = FALSE) if (!is.null(path_vector)) { stack_s2_tmp <- sf::st_crop(x = stack_s2_tmp, y = st_bbox(st_read(dsn = path_vector, quiet = TRUE))) } tmpfile[[band]] <- file.path(tmpdir, tools::file_path_sans_ext(basename(s2_bands[[band]]))) if (band == "Cloud") { stars::write_stars(obj = stack_s2_tmp, dsn = tmpfile[[band]], driver = "ENVI", type = "Byte", overwrite = TRUE) } else { stars::write_stars(obj = stack_s2_tmp, dsn = tmpfile[[band]], driver = "ENVI", type = "Int16", overwrite = TRUE) } gc() } stack_s2 <- stars::read_stars(tmpfile, along = "band", proxy = TRUE) return(stack_s2) } #" This function reads a raster stack, and gets footprint as pixel coordinates or vector file as input #" @param path_raster character. path for raster file #" @param path_vector character. path for vector file #" @param bbpix list. coordinates of pixels corresponding to a bounding box #" #" @return starsobj stars object corresponding to raster or raster subset #" #" @importFrom stars read_stars #" @importFrom sf st_bbox st_read st_crop #" @export read_raster <- function(path_raster, path_vector = NULL, bbpix = NULL) { # get bounding box corresponding to footprint of image or image subset if (is.null(bbpix)) { bb_xycoords <- get_bb(path_raster = path_raster, path_vector = path_vector, buffer = 0) } else { bb_xycoords <- bbpix } # prepare reading data for extent defined by bounding box nxoff <- bb_xycoords$UL$col nyoff <- bb_xycoords$UL$row nxsize <- bb_xycoords$UR$col - bb_xycoords$UL$col + 1 nysize <- bb_xycoords$LR$row - bb_xycoords$UR$row + 1 nbufxsize <- nxsize nbufysize <- nysize starsobj <- stars::read_stars(path_raster, along = "band", RasterIO = list(nXOff = nxoff, nYOff = nyoff, nXSize = nxsize, nYSize = nysize, nBufXSize = nbufxsize, nBufYSize = nbufysize), proxy = FALSE) return(starsobj) } #" This function reprojects a shapefile and saves reprojected shapefile #" #" @param path_vector_init character. path for a shapefile to be reprojected #" @param newprojection character. projection to be applied to path_vector_init #" @param path_vector_reproj character. path for the reprojected shapefile #" #" @return path_vector character. path of the shapefile #" - path_vector_init if the vector did not need reprojection #" - path_vector_reproj if the vector needed reprojection #" #" @importFrom rgdal readOGR writeOGR #" @importFrom sp spTransform #" @importFrom raster projection #" @export reproject_shp <- function(path_vector_init, newprojection, path_vector_reproj) { dir_vector_init <- dirname(path_vector_init) # shapefile extension fileext <- file_ext(basename(path_vector_init)) if (fileext == "shp") { name_vector_init <- file_path_sans_ext(basename(path_vector_init)) vector_init_ogr <- rgdal::readOGR(dir_vector_init, name_vector_init, verbose = FALSE) } else if (fileext == "kml") { vector_init_ogr <- rgdal::readOGR(path_vector_init, verbose = FALSE) } vector_init_proj <- raster::projection(vector_init_ogr) if (!vector_init_proj == newprojection) { dir_vector_reproj <- dirname(path_vector_reproj) name_vector_reproj <- file_path_sans_ext(basename(path_vector_reproj)) vector_reproj <- sp::spTransform(vector_init_ogr, newprojection) rgdal::writeOGR(obj = vector_reproj, dsn = dir_vector_reproj, layer = name_vector_reproj, driver = "ESRI Shapefile", overwrite_layer = TRUE) path_vector <- path_vector_reproj } else { path_vector <- path_vector_init } return(path_vector) } #" perform atmospheric corrections to convert L1C to L2A data with Sen2cor #" #" @param prodname character. produced with sen2r::s2_list #" @param l1c_path character. path of directory where L1C image is stored #" @param l2a_path character. path of directory where L2A image is stored #" @param datepattern character. pattern corresponding to date of acquisition to identify L2A directory #" @param tmp_path character. path of temporary directory where L2A image is stored #" sen2r configured as an alternative hub for S2 download #" #" @return pathl2a character. S2 Product name #" @importFrom sen2r safe_is_online s2_list s2_download s2_order #" @importFrom R.utils getAbsolutePath #" #" @export s2_from_l1c_to_l2a <- function(prodname, l1c_path, l2a_path, datepattern, tmp_path = NULL) { # define path for tmp directory if (is.null(tmp_path)) { tmp_path <- tempdir(check = TRUE) } tmp_prodlist <- prodname # perform Sen2Cor atmospheric corrections binpath <- sen2r::load_binpaths() # 2- open a command prompt and directly run sen2cor with following command line cmd <- paste(binpath$sen2cor, "--output_dir", R.utils::getAbsolutePath(l2a_path), R.utils::getAbsolutePath(file.path(l1c_path, prodname)), sep = " ") system(cmd) pathl2a <- list.files(path = l2a_path, pattern = datepattern, full.names = TRUE) return(pathl2a) } #" This function saves cloud masks. #" "cloudMask_Binary" is default binary mask with 0 where clouds are detected and 1 for clean pixels #" "cloudMask_RAW" is the original cloud layer produced by atmospheric correction algorithm #" --> may be useful to refine cloud mask #" #" @param s2_stars list. stars object containing raster data. Can be produced with function extract_from_s2_l2a #" @param cloud_path character. #" @param s2source character. #" @param footprint character. path for vector file defining footprint of interest in the image #" @param saveraw boolean. should the original cloud mask layer be saved? #" @param maxchunk numeric. Size of individual chunks to be written (in Mb) #" #" @return list of cloudmasks (binary mask, and raw mask if required) #" @importFrom sf st_read #" @importFrom stars write_stars #" @importFrom raster raster #" @export save_cloud_s2 <- function(s2_stars, cloud_path, s2source = "SAFE", footprint = NULL, saveraw = FALSE, maxchunk = 256) { whichcloud <- which(names(s2_stars$attr) == "Cloud") # Save cloud mask if (saveraw == TRUE) { cloudraw <- file.path(cloud_path, "CloudMask_RAW") obj <- stars::read_stars(s2_stars$attr[whichcloud], proxy = TRUE) sizeobj <- dim(obj)[1] * dim(obj)[2] / (1024**2) nbchunks <- ceiling(sizeobj / maxchunk) stars::write_stars(obj, dsn = cloudraw, driver = "ENVI", type = "Byte", chunk_size = c(dim(obj)[1], dim(obj)[2] / nbchunks), progress = TRUE) } else { cloudraw <- NULL } # Save cloud mask as in biodivMapR (0 = clouds, 1 = pixel ok) cloudmask <- stars::read_stars(s2_stars$attr[whichcloud], proxy = FALSE) if (s2source == "SAFE" || s2source == "THEIA") { cloudy <- which(cloudmask[[1]] > 0) sunny <- which(cloudmask[[1]] == 0) } else if (s2source == "LaSRC") { cloudy <- which(is.na(cloudmask[[1]])) sunny <- which(cloudmask[[1]] == 1) } cloudmask[[1]][cloudy] <- 0 cloudmask[[1]][sunny] <- 1 cloudbin <- file.path(cloud_path, "CloudMask_Binary") stars::write_stars(cloudmask, dsn = cloudbin, driver = "ENVI", type = "Byte", overwrite = TRUE) cloudmasks <- list("BinaryMask" = cloudbin, "RawMask" = cloudraw) # delete temporary file file.remove(s2_stars$attr[whichcloud]) if (file.exists(paste(s2_stars$attr[whichcloud], ".hdr", sep = ""))) file.remove(paste(s2_stars$attr[whichcloud], ".hdr", sep = "")) gc() return(cloudmasks) } #" This function saves reflectance files #" #" @param s2_stars list. stars object containing raster data. Can be produced with function extract_from_s2_l2a #" @param refl_path character. path for reflectance file to be stored #" @param format character. file format for reflectance data #" @param datatype character. data type (integer, float, 16bits, 32bits...) #" @param s2sat character. Sentinel-2 mission ("2A" or "2B") #" @param tile_s2 character. S2 tile name (2 numbers + 3 letters) #" @param dateacq_s2 double. date of acquisition #" @param MTD character. path for metadata file #" @param MTD_MSI character. path for metadata MSI file #" @param mtd_lasrc character. path for metadata LaSRC file #" @param maxchunk numeric. Size of individual chunks to be written (in Mb) #" #" @return None #" @importFrom stars write_stars st_apply #" @importFrom XML xml #" @export save_reflectance_s2 <- function(s2_stars, refl_path, format = "ENVI", datatype = "Int16", s2sat = NULL, tile_s2 = NULL, dateacq_s2 = NULL, mtd = NULL, mtd_msi = NULL, mtd_lasrc = NULL, maxchunk = 256) { # identify if S2A or S2B, if possible s2mission <- check_s2mission(s2sat = s2sat, tile_s2 = tile_s2, dateacq_s2 = dateacq_s2) # define central wavelength corresponding to each spectral band if (s2mission == "2A") { wl_s2 <- list("B02" = 496.6, "B03" = 560.0, "B04" = 664.5, "B05" = 703.9, "B06" = 740.2, "B07" = 782.5, "B08" = 835.1, "B8A" = 864.8, "B11" = 1613.7, "B12" = 2202.4) } else if (s2mission == "2B") { wl_s2 <- list("B02" = 492.1, "B03" = 559.0, "B04" = 665.0, "B05" = 703.8, "B06" = 739.1, "B07" = 779.7, "B08" = 833.0, "B8A" = 864.0, "B11" = 1610.4, "B12" = 2185.7) } if (s2mission == "2A") { sensor <- "Sentinel_2A" } else if (s2mission == "2B") { sensor <- "Sentinel_2B" } # apply offset when necessary listbands_bis <- c("B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12") if (!is.null(mtd_msi) && is.null(mtd_lasrc)) { # read XML file containing info about geometry of acquisition s2xml <- XML::xmlToList(mtd_msi) xml_offset <- s2xml$General_Info$Product_Image_Characteristics$BOA_ADD_offset_VALUES_LIST bands <- lapply(s2xml$General_Info$Product_Image_Characteristics$Spectral_Information_List, "[[", 4) if (!is.null(xml_offset) && !is.null(bands)) { bandid <- lapply(bands, "[[", 1) bandname <- lapply(bands, "[[", 2) offset <- data.frame("bandname" = unlist(bandname), "bandid" = unlist(bandid), "offset" = unlist(lapply(xml_offset, "[[", 1))) selbands <- match(listbands_bis, offset$bandname) offset <- offset[selbands, ] boa_quantval <- as.numeric(s2xml$General_Info$Product_Image_Characteristics$QUANTIFICATION_VALUES_LIST$BOA_QUANTIFICATION_VALUE[1]) } else { offset <- data.frame("bandname" = listbands_bis, "bandid" = c(1, 2, 3, 4, 5, 6, 7, 8, 11, 12), "offset" = 0) boa_quantval <- 10000 } } else if (!is.null(mtd_lasrc)) { # read XML file containing info about geometry of acquisition s2xml <- XML::xmlToList(mtd_lasrc) attributes_lasrc <- s2xml$bands[[14]]$.attrs attributes_lasrc_df <- data.frame(attributes_lasrc) if (match("add_offset", rownames(attributes_lasrc_df)) > 0 && match("scale_factor", rownames(attributes_lasrc_df)) > 0) { xml_offset <- as.numeric(attributes_lasrc[["add_offset"]]) boa_quantval <- 1 / as.numeric(attributes_lasrc[["scale_factor"]]) offset <- data.frame("bandname" = listbands_bis, "bandid" = c(1, 2, 3, 4, 5, 6, 7, 8, 11, 12), "offset" = xml_offset) } else { offset <- data.frame("bandname" = listbands_bis, "bandid" = c(1, 2, 3, 4, 5, 6, 7, 8, 11, 12), "offset" = 0) boa_quantval <- 10000 } } else { offset <- data.frame("bandname" = listbands_bis, "bandid" = c(1, 2, 3, 4, 5, 6, 7, 8, 11, 12), "offset" = 0) boa_quantval <- 10000 } # identify where spectral bands are in the stars object stars_spectral <- list() starsnames <- names(s2_stars$attr) stars_spectral$bandname <- starsnames[which(!starsnames == "Cloud")] stars_spectral$wavelength <- wl_s2[stars_spectral$bandname] sortedwl <- names(wl_s2) reorder <- match(sortedwl, stars_spectral$bandname) elim <- which(is.na(reorder)) if (length(elim) > 0) { reorder <- reorder[-elim] } pathr <- s2_stars$attr[reorder] names(pathr) <- NULL s2_stars2 <- stars::read_stars(pathr, along = "band", proxy = TRUE) stars_spectral$bandname <- stars_spectral$bandname[reorder] stars_spectral$wavelength <- stars_spectral$wavelength[reorder] uniqueoffset <- as.numeric(unique(offset$offset)) if (length(uniqueoffset) > 1) { message("Warning: BOA offset differs between bands.") message("offset will not be applied to the final S2 reflectance raster") message("check metadata file to identify the offset applied on each band") print(mtd_msi) } else { message("applying offset to reflectance data") if (is.null(mtd_lasrc) || uniqueoffset == 0) { offsets2 <- function(x) (round(x + uniqueoffset) * (10000 / boa_quantval)) s2_stars2 <- stars::st_apply(X = s2_stars2, MARGIN = "band", FUN = offsets2) } else { offsets2 <- function(x) (round(10000 * ((x + uniqueoffset * boa_quantval) / boa_quantval))) s2_stars2 <- stars::st_apply(X = s2_stars2, MARGIN = "band", FUN = offsets2) } } write_stack_s2(stars_s2 = s2_stars2, stars_spectral = stars_spectral, refl_path = refl_path, format = format, datatype = datatype, sensor = sensor, maxchunk = maxchunk) # save metadata file as well if available if (!is.null(mtd)) { if (file.exists(mtd)) { file.copy(from = mtd, to = file.path(dirname(refl_path), basename(mtd)), overwrite = TRUE) } } # save metadata file as well if available if (!is.null(mtd_msi)) { if (file.exists(mtd_msi)) { file.copy(from = mtd_msi, to = file.path(dirname(refl_path), basename(mtd_msi)), overwrite = TRUE) } } # save LaSRC metadata file as well if available if (!is.null(mtd_lasrc)) { if (file.exists(mtd_lasrc)) { file.copy(from = mtd_lasrc, to = file.path(dirname(refl_path), basename(mtd_lasrc)), overwrite = TRUE) } } # delete temporary file for (pathtemp in pathr) { file.remove(pathtemp) if (file.exists(paste(pathtemp, ".hdr", sep = ""))) file.remove(paste(pathtemp, ".hdr", sep = "")) } gc() return(invisible()) } #" ENVI functions #" #" based on https://github.com/cran/hyperSpec/blob/master/R/read.ENVI.R #" added wavelength, fwhm, ... to header reading #" Title #" #" @param x character. #" @param separator character #" @param trim_blank boolean. #" #" @return list. #" @export split_line <- function(x, separator, trim_blank = TRUE) { tmp <- regexpr(separator, x) key <- substr(x, 1, tmp - 1) value <- substr(x, tmp + 1, nchar(x)) if (trim_blank) { blank_pattern <- "^[[:blank:]]*([^[:blank:]]+.*[^[:blank:]]+)[[:blank:]]*$" key <- sub(blank_pattern, "\\1", key) value <- sub(blank_pattern, "\\1", value) } value <- as.list(value) names(value) <- key return(value) } #" save raster footprint as vector file #" #" @param path_raster character. path for a raster file #" @param path_vector character. path for a vector file #" @param driver character. driver for vector #" #" @return None #" @importFrom raster raster extent projection #" @importFrom sf st_as_sf st_write #" @export vectorize_raster_extent <- function(path_raster, path_vector, driver = "ESRI Shapefile") { rast <- raster(path_raster) e <- extent(rast) # coerce to a SpatialPolygons object p <- as(e, "SpatialPolygons") projection(p) <- projection(rast) p <- sf::st_as_sf(p) sf::st_write(obj = p, path_vector, driver = driver) # create to a shapefile return(invisible()) } #" writes ENVI hdr file #" #" @param hdr content to be written #" @param hdrpath Path of the hdr file #" #" @return None #" @importFrom stringr str_count #" @export write_envi_header <- function(hdr, hdrpath) { h <- lapply(hdr, function(x) { if (length(x) > 1 || (is.character(x) && stringr::str_count(x, "\\w+") > 1)) { x <- paste0("{", paste(x, collapse = ", "), "}") } # convert last numerics x <- as.character(x) }) writeLines(c("ENVI", paste(names(hdr), h, sep = " = ")), con = hdrpath) return(invisible()) } #" This function writes a raster Stack object into a ENVI raster file #" #" @param stackobj list. raster stack #" @param stackpath character. path where to store the stack #" @param bands list. should include "bandname", and if possible "wavelength" #" @param datatype character. should be INT2S or FLT4S for example #" @param sensor character. Name of the sensor used to acquire the image #" @param stretch boolean. Set TRUE to get 10% stretching at display for reflectance, mentioned in hdr only #" #" @return None #" @importFrom utils read.table #" @export write_rasterstack_envi <- function(stackobj, stackpath, bands, datatype = "INT2S", sensor = "Unknown", stretch = FALSE) { r <- raster::writeRaster(x = stackobj, filename = stackpath, format = "Ehdr", overwrite = TRUE, datatype = datatype) raster::hdr(r, format = "ENVI") # Edit hdr file to add metadata hdr <- read_envi_header(get_hdr_name(stackpath)) hdr$`band names` <- bands$bandname if (length(bands$wavelength) == length(bands$bandname)) { hdr$wavelength <- bands$wavelength } else { hdr$wavelength <- NULL } if (stretch == TRUE) { hdr$`default stretch` <- "0.000000 1000.000000 linear" } hdr$`z plot range` <- NULL hdr$`data ignore value` <- "-Inf" hdr$`coordinate system string` <- read.table(paste(stackpath, ".prj", sep = "")) proj <- strsplit(x = strsplit(x = projection(stackobj), split = " ")[[1]][1], split = "=")[[1]][2] zone <- strsplit(x = strsplit(x = projection(stackobj), split = " ")[[1]][2], split = "=")[[1]][2] datum <- strsplit(x = strsplit(x = projection(stackobj), split = " ")[[1]][3], split = "=")[[1]][2] oldproj <- hdr$`map info` newproj <- gsub(pattern = "projection", replacement = proj, x = oldproj) newproj <- paste(newproj, zone, datum, sep = ", ") hdr$`map info` <- newproj hdr$`sensor type` <- sensor write_envi_header(hdr = hdr, hdrpath = get_hdr_name(stackpath)) # remove unnecessary files file2remove <- paste(stackpath, ".aux.xml", sep = "") file.remove(file2remove) file2remove <- paste(stackpath, ".prj", sep = "") file.remove(file2remove) file2remove <- paste(stackpath, ".stx", sep = "") file.remove(file2remove) return(invisible()) } #" This function writes a stars object into a raster file #" #" @param stars_s2 list. stars object containing raster data. Can be produced with function Crop_n_resample_S2 #" @param stars_spectral list. band name to be saved in the stack and spectral bands corresponding to the image #" @param refl_path character. path where to store the image #" @param format character. default = ENVI BSQ. otherwise use gdal drivers #" @param datatype character. should be Int16 or Float64 for example #" @param sensor character. Name of the sensor used to acquire the image #" @param maxchunk numeric. Size of individual chunks to be written (in Mb) #" #" @return None #" @export write_stack_s2 <- function(stars_s2, stars_spectral, refl_path, format = "ENVI", datatype = "Int16", sensor = "Unknown", maxchunk = 256) { # write raster file from proxy using chunks sizeobj <- 2 * dim(stars_s2)[1] * dim(stars_s2)[2] * dim(stars_s2)[3] / (1024**2) nbchunks <- ceiling(sizeobj / maxchunk) stars::write_stars(obj = stars_s2, dsn = refl_path, driver = format, type = datatype, chunk_size = c(dim(stars_s2)[1], ceiling(dim(stars_s2)[2] / nbchunks)), progress = TRUE) if (format == "ENVI") { adjust_envi_hdr(dsn = refl_path, bands = stars_spectral, sensor = sensor, stretch = TRUE) } return(invisible()) }