Mercurial > repos > ecology > srs_spectral_indices
view alpha_beta.r @ 1:b40aba3d9e5c draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit 0f331043178bbfbe5cda0e31d887971464b3071c
author | ecology |
---|---|
date | Fri, 07 Apr 2023 14:41:13 +0000 |
parents | a8dabbf47e15 |
children |
line wrap: on
line source
#Rscript ########################################### ## Mapping alpha and beta diversity ## ########################################### #####Packages : stars # utils # biodivmapr # raster # sf # mapview # leafpop # RColorBrewer # labdsv # rgdal # ggplot2 # gridExtra #####Load arguments args <- commandArgs(trailingOnly = TRUE) #####Import the S2 data if (length(args) < 1) { stop("This tool needs at least 1 argument") }else { data_raster <- args[1] rasterheader <- args[2] data <- args[3] # type of PCA: # PCA: no rescaling of the data # SPCA: rescaling of the data typepca <- as.character(args[4]) alpha <- as.logical(args[5]) beta <- as.logical(args[6]) funct <- as.logical(args[7]) all <- as.logical(args[8]) nbcpu <- as.integer(args[9]) source(args[10]) } ################################################################################ ## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ## ################################################################################ if (data_raster == "") { #Create a directory where to unzip your folder of data dir.create("data_dir") unzip(data, exdir = "data_dir") # Path to raster data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") input_image_file <- file.path("data_dir/results/Reflectance", data_raster[1]) input_header_file <- file.path("data_dir/results/Reflectance", data_raster[2]) } else { input_image_file <- file.path(getwd(), data_raster, fsep = "/") input_header_file <- file.path(getwd(), rasterheader, fsep = "/") } ################################################################################ ## PROCESS IMAGE ## ################################################################################ # 1- Filter data in order to discard non vegetated / shaded / cloudy pixels print("PERFORM PCA ON RASTER") pca_output <- biodivMapR::perform_PCA(Input_Image_File = input_image_file, Input_Mask_File = input_mask_file, Output_Dir = output_dir, TypePCA = typepca, FilterPCA = filterpca, nbCPU = nbcpu, MaxRAM = maxram) pca_files <- pca_output$PCA_Files pix_per_partition <- pca_output$Pix_Per_Partition nb_partitions <- pca_output$nb_partitions # path for the updated mask input_mask_file <- pca_output$MaskPath selected_pcs <- seq(1, dim(raster::stack(input_image_file))[3]) selected_pcs <- all(selected_pcs) ################################################################################ ## MAP ALPHA AND BETA DIVERSITY ## ################################################################################ print("MAP SPECTRAL SPECIES") kmeans_info <- biodivMapR::map_spectral_species(Input_Image_File = input_image_file, Output_Dir = output_dir, PCA_Files = pca_files, Input_Mask_File = input_mask_file, SelectedPCs = selected_pcs, Pix_Per_Partition = pix_per_partition, nb_partitions = nb_partitions, TypePCA = typepca, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters) image_name <- tools::file_path_sans_ext(basename(input_image_file)) if (alpha == TRUE || beta == TRUE || all == TRUE) { ## alpha print("MAP ALPHA DIVERSITY") index_alpha <- c("Shannon") alpha_div <- biodivMapR::map_alpha_div(Input_Image_File = input_image_file, Output_Dir = output_dir, TypePCA = typepca, window_size = window_size, nbCPU = nbcpu, MaxRAM = maxram, Index_Alpha = index_alpha, nbclusters = nbclusters, FullRes = TRUE, LowRes = FALSE, MapSTD = FALSE) alpha_zip <- file.path(output_dir, image_name, typepca, "ALPHA", "Shannon_10_Fullres.zip") alpha_path <- file.path(output_dir, image_name, typepca, "ALPHA") unzip(alpha_zip, exdir = alpha_path) alpha_path <- file.path(output_dir, image_name, typepca, "ALPHA", "Shannon_10_Fullres") alpha_raster <- raster::raster(alpha_path) get_alpha <- convert_raster(alpha_raster) if (alpha == TRUE || all == TRUE) { colnames(get_alpha) <- c("Alpha", "longitude", "latitude") plot_indices(get_alpha, titre = "Alpha") write.table(get_alpha, file = "alpha.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) } if (beta == TRUE || all == TRUE) { ## beta print("MAP BETA DIVERSITY") beta_div <- biodivMapR::map_beta_div(Input_Image_File = input_image_file, Output_Dir = output_dir, TypePCA = typepca, window_size = window_size, nb_partitions = nb_partitions, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters) beta_path <- file.path(output_dir, image_name, typepca, "BETA", "BetaDiversity_BCdiss_PCO_10") beta_raster <- raster::raster(beta_path) get_beta <- convert_raster(beta_raster) colnames(get_beta) <- c("Beta", "longitude", "latitude") plot_indices(get_beta, titre = "Beta") write.table(get_beta, file = "beta.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) } } ################################################################################ ## COMPUTE ALPHA AND BETA DIVERSITY FROM FIELD PLOTS ## ################################################################################ if (funct == TRUE || all == TRUE) { mapper <- biodivMapR::map_functional_div(Original_Image_File = input_image_file, Functional_File = pca_files, Selected_Features = selected_pcs, Output_Dir = output_dir, window_size = window_size, nbCPU = nbcpu, MaxRAM = maxram, TypePCA = typepca, FullRes = TRUE, LowRes = FALSE, MapSTD = FALSE) funct_zip <- file.path(output_dir, image_name, typepca, "FUNCTIONAL", "FunctionalDiversity_Map_MeanFilter_Fullres.zip") funct_path <- file.path(output_dir, image_name, typepca, "FUNCTIONAL") unzip(funct_zip, exdir = funct_path) funct_path <- file.path(output_dir, image_name, typepca, "FUNCTIONAL", "FunctionalDiversity_Map_MeanFilter_Fullres") funct_raster <- raster::raster(funct_path) get_funct <- convert_raster(funct_raster) colnames(get_funct) <- c("Functionnal", "longitude", "latitude") plot_indices(get_funct, titre = "Functionnal") write.table(get_funct, file = "Functionnal.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) }