Mercurial > repos > ecology > srs_spectral_indices
view comparison_div.r @ 1:b40aba3d9e5c draft default tip
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit 0f331043178bbfbe5cda0e31d887971464b3071c
author | ecology |
---|---|
date | Fri, 07 Apr 2023 14:41:13 +0000 |
parents | a8dabbf47e15 |
children |
line wrap: on
line source
#Rscript ########################################### ## Mapping alpha and beta diversity ## ########################################### #####Packages : stars # utils # biodivmapr # raster # sf # mapview # leafpop # RColorBrewer # labdsv # rgdal # ggplot2 # gridExtra ##remotes::install_github("jbferet/biodivMapR") #####Load arguments args <- commandArgs(trailingOnly = TRUE) #####Import the S2 data if (length(args) < 1) { stop("This tool needs at least 1 argument") }else { data_raster <- args[1] rasterheader <- args[2] data <- args[3] plots_zip <- args[4] choice <- as.character(args[5]) source(args[6]) # type of PCA: # PCA: no rescaling of the data # SPCA: rescaling of the data typepca <- as.character(args[7]) } ################################################################################ ## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ## ################################################################################ if (data_raster == "") { #Create a directory where to unzip your folder of data dir.create("data_dir") unzip(data, exdir = "data_dir") # Path to raster data_raster <- list.files("data_dir/results/Reflectance", pattern = "_Refl") input_image_file <- file.path("data_dir/results/Reflectance", data_raster[1]) input_header_file <- file.path("data_dir/results/Reflectance", data_raster[2]) } else { input_image_file <- file.path(getwd(), data_raster, fsep = "/") input_header_file <- file.path(getwd(), rasterheader, fsep = "/") } ################################################################################ ## PROCESS IMAGE ## ################################################################################ # 1- Filter data in order to discard non vegetated / shaded / cloudy pixels print("PERFORM PCA ON RASTER") pca_output <- biodivMapR::perform_PCA(Input_Image_File = input_image_file, Input_Mask_File = input_mask_file, Output_Dir = output_dir, TypePCA = typepca, FilterPCA = filterpca, nbCPU = nbcpu, MaxRAM = maxram) pca_files <- pca_output$PCA_Files pix_per_partition <- pca_output$Pix_Per_Partition nb_partitions <- pca_output$nb_partitions # path for the updated mask input_mask_file <- pca_output$MaskPath # 3- Select principal components from the PCA raster # Select components from the PCA/SPCA/MNF raster sel_compo <- c("1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8") image_name <- tools::file_path_sans_ext(basename(input_image_file)) output_dir_full <- file.path(output_dir, image_name, typepca, "PCA") write.table(sel_compo, paste0(output_dir_full, "/Selected_Components.txt")) sel_pc <- file.path(output_dir_full, "Selected_Components.txt") ################################################################################ ## MAP ALPHA AND BETA DIVERSITY ## ################################################################################ print("MAP SPECTRAL SPECIES") kmeans_info <- biodivMapR::map_spectral_species(Input_Image_File = input_image_file, Output_Dir = output_dir, PCA_Files = pca_files, Input_Mask_File = input_mask_file, Pix_Per_Partition = pix_per_partition, nb_partitions = nb_partitions, nbCPU = nbcpu, MaxRAM = maxram, nbclusters = nbclusters, TypePCA = typepca) ################################################################################ ## COMPUTE ALPHA AND BETA DIVERSITY FROM FIELD PLOTS ## ################################################################################ ## read selected features from dimensionality reduction ## path for selected components # location of the directory where shapefiles used for validation are saved dir.create("VectorDir") unzip(plots_zip, exdir = "VectorDir") # list vector data path_vector <- biodivMapR::list_shp("VectorDir") name_vector <- tools::file_path_sans_ext(basename(path_vector)) # location of the spectral species raster needed for validation path_spectralspecies <- kmeans_info$SpectralSpecies # get diversity indicators corresponding to shapefiles (no partitioning of spectral dibversity based on field plots so far...) biodiv_indicators <- biodivMapR::diversity_from_plots(Raster_SpectralSpecies = path_spectralspecies, Plots = path_vector, nbclusters = nbclusters, Raster_Functional = pca_files, Selected_Features = FALSE) shannon_rs <- c(biodiv_indicators$Shannon)[[1]] fric <- c(biodiv_indicators$FunctionalDiversity$FRic) feve <- c(biodiv_indicators$FunctionalDiversity$FEve) fdiv <- c(biodiv_indicators$FunctionalDiversity$FDiv) # if no name for plots biodiv_indicators$Name_Plot <- seq(1, length(biodiv_indicators$Shannon[[1]]), by = 1) #################################################### # write RS indicators # #################################################### # write a table for Shannon index # write a table for all spectral diversity indices corresponding to alpha diversity results <- data.frame(name_vector, biodiv_indicators$Richness, biodiv_indicators$Fisher, biodiv_indicators$Shannon, biodiv_indicators$Simpson, biodiv_indicators$FunctionalDiversity$FRic, biodiv_indicators$FunctionalDiversity$FEve, biodiv_indicators$FunctionalDiversity$FDiv) names(results) <- c("ID_Plot", "Species_Richness", "Fisher", "Shannon", "Simpson", "fric", "feve", "fdiv") write.table(results, file = "Diversity.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) if (choice == "Y") { # write a table for Bray Curtis dissimilarity bc_mean <- biodiv_indicators$BCdiss bray_curtis <- data.frame(name_vector, bc_mean) colnames(bray_curtis) <- c("ID_Plot", bray_curtis[, 1]) write.table(bray_curtis, file = "BrayCurtis.tabular", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE, quote = FALSE) #################################################### # illustrate results #################################################### # apply ordination using PCoA (same as done for map_beta_div) mat_bc_dist <- as.dist(bc_mean, diag = FALSE, upper = FALSE) betapco <- labdsv::pco(mat_bc_dist, k = 3) # assign a type of vegetation to each plot, assuming that the type of vegetation # is defined by the name of the shapefile nbsamples <- shpname <- c() for (i in 1:length(path_vector)) { shp <- path_vector[i] nbsamples[i] <- length(rgdal::readOGR(shp, verbose = FALSE)) shpname[i] <- tools::file_path_sans_ext(basename(shp)) } type_vegetation <- c() for (i in 1: length(nbsamples)) { for (j in 1:nbsamples[i]) { type_vegetation <- c(type_vegetation, shpname[i]) } } #data frame including a selection of alpha diversity metrics and beta diversity expressed as coordinates in the PCoA space results <- data.frame("vgtype" = type_vegetation, "pco1" = betapco$points[, 1], "pco2" = betapco$points[, 2], "pco3" = betapco$points[, 3], "shannon" = shannon_rs, "fric" = fric, "feve" = feve, "fdiv" = fdiv) #plot field data in the PCoA space, with size corresponding to shannon index g1 <- ggplot2::ggplot(results, ggplot2::aes(x = pco1, y = pco2, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) g2 <- ggplot2::ggplot(results, ggplot2::aes(x = pco1, y = pco3, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) g3 <- ggplot2::ggplot(results, ggplot2::aes(x = pco2, y = pco3, color = vgtype, size = shannon)) + ggplot2::geom_point(alpha = 0.6) + ggplot2::scale_color_manual(values = c("#e6140a", "#e6d214", "#e68214", "#145ae6")) #extract legend get_legend <- function(a_gplot) { tmp <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(a_gplot)) leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") legend <- tmp$grobs[[leg]] return(legend) } legend <- get_legend(g3) gall <- gridExtra::grid.arrange(gridExtra::arrangeGrob(g1 + ggplot2::theme(legend.position = "none"), g2 + ggplot2::theme(legend.position = "none"), g3 + ggplot2::theme(legend.position = "none"), nrow = 1), legend, nrow = 2, heights = c(3, 2)) filename <- ggplot2::ggsave("BetaDiversity_PcoA1_vs_PcoA2_vs_PcoA3.png", gall, scale = 0.65, width = 12, height = 9, units = "in", dpi = 200, limitsize = TRUE) filename }