Mercurial > repos > ecology > wormsmeasurements
diff wormsmeasurements.R @ 1:6f75ab89587a draft default tip
planemo upload for repository https://github.com/jeanlecras/tools-ecology/tree/master/tools/WormsMeasurements commit ced658540f05bb07e1e687af30a3fa4ea8e4803c
author | ecology |
---|---|
date | Wed, 28 May 2025 10:13:42 +0000 |
parents | 23b963a1284e |
children |
line wrap: on
line diff
--- a/wormsmeasurements.R Wed May 14 15:08:00 2025 +0000 +++ b/wormsmeasurements.R Wed May 28 10:13:42 2025 +0000 @@ -13,14 +13,20 @@ stop("This tool needs at least one argument") } -occurrence <- read.csv(args[1], header=T, sep="\t") %>% arrange(scientificName) +scientificName_name <- args[3] +occurrence <- read.csv(args[1], header=T, sep="\t") %>% + arrange(.[[scientificName_name]]) measurement_types <- unlist(str_split(args[2], ",")) include_inherited <- ifelse(args[4]=="true", T, F) pivot_wider <- ifelse(args[5]=="true", T, F) -scientificName_name <- args[3] +exclude_NA <- ifelse(args[6]=="true", T, F) + +# regex to only keep genus and specific epithet from scientific names +regex_find <- "^([A-Z][^A-Z(]+)(.*)$" +regex_replace <- "\\1" -### +# function to extract the measurement values from the attributes data tibble extract_traits_values <- function(traits_data) { result <- setNames(rep(NA, length(measurement_types)), measurement_types) @@ -42,18 +48,21 @@ return(result) } +# function to call the call the WoRMS API and get the measurement values get_life_history_traits <- function(scientific_name) { - if (scientific_name %in% names(cache)) { - return(cache[[scientific_name]]) + clean_scientific_name <- trimws(gsub(regex_find, regex_replace, scientific_name)) + + if (clean_scientific_name %in% names(cache)) { + return(cache[[clean_scientific_name]]) } worms_id <- tryCatch( - wm_name2id(name = scientific_name), + wm_name2id(name = clean_scientific_name), error = function(e) NA ) if (is.na(worms_id) || length(worms_id) == 0) { - cache[[scientific_name]] <<- NULL + cache[[clean_scientific_name]] <<- NULL return(NULL) } @@ -63,27 +72,60 @@ ) if (is.null(data_attr)) { - cache[[scientific_name]] <<- NULL + cache[[clean_scientific_name]] <<- NULL return(NULL) } traits <- extract_traits_values(data_attr) - cache[[scientific_name]] <<- traits + cache[[clean_scientific_name]] <<- traits return(traits) } +# a cache to limit API calls cache <- list() +# add a columns conataining the lists of values of the measurments requested trait_data <- occurrence %>% mutate(life_history_traits = map(.data[[scientificName_name]], ~ get_life_history_traits(.x))) -view(trait_data) +# convert the column of lists to multiple columns of unique values trait_data <- trait_data %>% unnest_wider(life_history_traits) -if (pivot_wider) { - trait_data <- dummy_cols(trait_data, select_columns = measurement_types, remove_selected_columns=T, ignore_na=T) - +# make sur each measurement type has a column +for (col in measurement_types) { + if (!(col %in% names(trait_data))) { + trait_data[[col]] <- NA + } } +# list of quantitativ measurements +numeric_cols <- c() + +# try to convert columns to numeric and remember them +trait_data <- trait_data %>% + mutate(across(all_of(measurement_types), ~ { + numeric_col <- suppressWarnings(as.numeric(.)) + if (all(is.na(.) == is.na(numeric_col))) { + numeric_cols <<- c(numeric_cols, cur_column()) + numeric_col + } else { + . + } + })) + +# filter NA but only in the added columns +if (exclude_NA) { + trait_data <- trait_data[complete.cases(trait_data[, measurement_types]),] +} + +# determine what are the qualitativ columns to be one hot encoded +factor_cols <- setdiff(measurement_types, numeric_cols) + +# one hot encode quantitativ columns +if (pivot_wider & length(factor_cols) > 0) { + trait_data <- dummy_cols(trait_data, select_columns = factor_cols, remove_selected_columns=T, ignore_na=T) +} + +# write the enriched dataset as tabular write.table(trait_data, "enriched_data.tabular", sep="\t", row.names = FALSE) \ No newline at end of file