Mercurial > repos > ecology > xarray_coords_info
view timeseries.py @ 3:663e6f115a76 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit fd8ad4d97db7b1fd3876ff63e14280474e06fdf7
author | ecology |
---|---|
date | Sun, 31 Jul 2022 21:21:20 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python3 # # # usage: netCDF_timeseries.py [-h] [--output output.png] # [--save timeseries.tabular] # [--config config-file] # [-v] # input varname # positional arguments: # input input filename with geographical coordinates (netCDF # format) # varname Specify which variable to extract (case sensitive) # # optional arguments: # -h, --help show this help message and exit # --output output.png filename to store image (png format) # --save timeseries.tabular filename to store timeseries (tabular format) # --config config file extract parameters # -v, --verbose switch on verbose mode # import argparse import ast import warnings import cftime # noqa: F401 import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # noqa: I202,E402 from matplotlib.dates import DateFormatter # noqa: I202,E402 import xarray as xr # noqa: I202,E402 class TimeSeries (): def __init__(self, input, varname, output, save, verbose=False, config_file=""): li = list(input.split(",")) if len(li) > 1: self.input = li else: self.input = input self.varname = varname self.xylim_supported = True if output == "" or output is None: self.output = "Timeseries.png" else: self.output = output if save == "" or save is None: self.save = "Timeseries.tabular" else: self.save = save self.verbose = verbose self.time_start_value = "" self.time_end_value = "" self.lon_value = "" self.lat_value = "" self.lat_name = 'lat' self.lon_name = 'lon' self.time_name = 'time' self.title = '' self.xlabel = '' self.ylabel = '' self.format_date = '' if config_file != "" and config_file is not None: with open(config_file) as f: sdict = ''.join( f.read().replace("\n", "").split('{')[1].split('}')[0] ) tmp = ast.literal_eval('{' + sdict.strip() + '}') for key in tmp: if key == 'time_start_value': self.time_start_value = tmp[key] if key == 'time_end_value': self.time_end_value = tmp[key] if key == 'lon_value': self.lon_value = tmp[key] if key == 'lat_value': self.lat_value = tmp[key] if key == 'lon_name': self.lon_name = tmp[key] if key == 'lat_name': self.lat_name = tmp[key] if key == 'time_name': self.time_name = tmp[key] if key == 'title': self.title = tmp[key] if key == 'xlabel': self.xlabel = tmp[key] if key == 'ylabel': self.ylabel = tmp[key] if key == 'format_date': self.format_date = tmp[key] self.format_date = self.format_date.replace('X', '%') if type(self.input) is list: self.dset = xr.open_mfdataset(self.input, use_cftime=True) else: self.dset = xr.open_dataset(self.input, use_cftime=True) if verbose: print("input: ", self.input) print("varname: ", self.varname) if self.time_start_value: print("time_start_value: ", self.time_start_value) if self.time_end_value: print("time_end_value: ", self.time_end_value) print("output: ", self.output) if self.lon_value: print(self.lon_name, self.lon_value) if self.lat_value: print(self.lat_name, self.lat_value) def plot(self): if self.lon_value: lon_c = float(self.lon_value) if self.lat_value: lat_c = float(self.lat_value) if self.lat_value and self.lon_value: self.df = self.dset.sel({self.lat_name: lat_c, self.lon_name: lon_c}, method='nearest') else: self.df = self.dset if self.time_start_value or self.time_end_value: self.df = self.df.sel({self.time_name: slice(self.time_start_value, self.time_end_value)}) # Saving the time series into a tabular self.df = self.df[self.varname].squeeze().to_dataframe() self.df.dropna().to_csv(self.save, sep='\t') # Plot the time series into png image fig = plt.figure(figsize=(15, 5)) ax = plt.subplot(111) self.df[self.varname].plot(ax=ax) if self.title: plt.title(self.title) if self.xlabel: plt.xlabel(self.xlabel) if self.ylabel: plt.ylabel(self.ylabel) if self.format_date: ax.xaxis.set_major_formatter(DateFormatter(self.format_date)) fig.tight_layout() fig.savefig(self.output) if __name__ == '__main__': warnings.filterwarnings("ignore") parser = argparse.ArgumentParser() parser.add_argument( 'input', help='input filename with geographical coordinates (netCDF format)' ) parser.add_argument( 'varname', help='Specify which variable to plot (case sensitive)' ) parser.add_argument( '--output', help='output filename to store resulting image (png format)' ) parser.add_argument( '--save', help='save resulting tabular file (tabular format) into filename' ) parser.add_argument( '--config', help='pass timeseries parameters via a config file' ) parser.add_argument( "-v", "--verbose", help="switch on verbose mode", action="store_true") args = parser.parse_args() dset = TimeSeries(input=args.input, varname=args.varname, output=args.output, save=args.save, verbose=args.verbose, config_file=args.config) dset.plot()