Mercurial > repos > eslerm > vkmz
view vkmz.py @ 0:0b8ddf650752 draft
planemo upload for repository https://github.com/HegemanLab/VKMZ commit 7c299d22bdce251ce599cd34df76919d297a7007-dirty
author | eslerm |
---|---|
date | Wed, 02 May 2018 18:31:06 -0400 |
parents | |
children | b02af8eb8e6e |
line wrap: on
line source
''' based on the BMRB compound database which can be found at: http://www.bmrb.wisc.edu/ftp/pub/bmrb/relational_tables/metabolomics/Chem_comp.csv ''' import re import argparse import multiprocessing from multiprocessing import Pool import csv import numpy as np import math import pandas as pd from plotly import __version__ import plotly.offline as py import plotly.graph_objs as go parser = argparse.ArgumentParser() inputSubparser = parser.add_subparsers(help='Select input type:', dest='input-type') parse_tsv = inputSubparser.add_parser('tsv', help='Use tabular data as input.') parse_tsv.add_argument('--input', '-i', required=True, help='Path to tabular file. Must include columns: sample ID, mz, polarity, intensity, & retention time.') parse_tsv.add_argument('--no-plot', '-np', action='store_true', help='Disable plot generation.') parse_xcms = inputSubparser.add_parser('xcms', help='Use XCMS data as input.') parse_xcms.add_argument('--data-matrix', '-xd', required=True, nargs='?', type=str, help='Path to XCMS dataMatrix file.') parse_xcms.add_argument('--sample-metadata', '-xs', required=True, nargs='?', type=str, help='Path to XCMS sampleMetadata file.') parse_xcms.add_argument('--variable-metadata', '-xv', required=True, nargs='?', type=str, help='Path to XCMS variableMetadata file.') parse_xcms.add_argument('--no-plot', '-n', action='store_true', help='Disable plot generation.') parse_plot = inputSubparser.add_parser('plot', help='Only plot data.') parse_plot.add_argument('--input', '-i', required=True, nargs='?', type=str, help='Path to VKMZ generated tabular file.') for inputSubparser in [parse_tsv, parse_xcms]: inputSubparser.add_argument('--output', '-o', nargs='?', type=str, required=True, help='Specify output file path.') inputSubparser.add_argument('--error', '-e', nargs='?', type=float, required=True, help='Mass error of mass spectrometer in PPM') inputSubparser.add_argument('--database', '-d', nargs='?', default='databases/bmrb-light.tsv', help='Select database.') inputSubparser.add_argument('--directory', nargs='?', default='', type=str, help='Define directory of tool.') inputSubparser.add_argument('--no-adjustment', '-na', action='store_true', help='Use flag to turn off polarity based mass adjustment. This flag should always be used if reprocessing data generated by VKMZ.') inputSubparser.add_argument('--multiprocessing', '-m', action='store_true', help='Use flag to turn on multiprocessing.') inputSubparser.add_argument('--plottype', '-p', nargs='?', default='scatter-2d', choices=['scatter-2d', 'scatter-3d'], help='Select plot type.') inputSubparser.add_argument('--size', '-s', nargs='?', default=5, type=int, help='Set size of of dots. size+2*log(size*peak/(highest_peak/lowest_peak') inputSubparser.add_argument('--size-algorithm', '-a', nargs='?', default=0, type=int, choices=[0,1,2],help='Size algorithm selector. Algo 0: size, Algo 1: size+2*log(size*peak/(highest_peak/lowest_peak, Algo 2: size+2*size*peak/(highest_peak-lowest_peak)') args = parser.parse_args() vkInputType = getattr(args, "input-type") # read inputs, arguments and define globals vkError = getattr(args, "error") vkMultiprocessing = getattr(args, "multiprocessing") vkNoAdjustment = getattr(args, "no_adjustment") vkDatabaseFile = getattr(args, "database") vkDirectory = getattr(args, "directory") vkMass = [] vkFormula = [] try: with open(vkDirectory+vkDatabaseFile, 'r') as tsv: next(tsv) # skip first row for row in tsv: mass, formula = row.split() vkMass.append(mass) vkFormula.append(formula) except ValueError: print('The %s database could not be loaded.' % vkDatabaseFile) vkMaxIndex = len(vkMass)-1 vkOutput = getattr(args, "output") vkPlotType = getattr(args, 'plottype') vkSize = getattr(args, 'size') vkSizeAlgo = getattr(args, 'size_algorithm') # control predictions def forecaster(vkInput): if vkMultiprocessing: try: pool = Pool() vkOutputList = pool.map(featurePrediction, vkInput) except Exception as e: print("Error during multirpocessing: "+str(e)) finally: pool.close() pool.join() else: vkOutputList = map(featurePrediction, vkInput) vkOutputList = [x for x in vkOutputList if x is not None] return(vkOutputList) # predict feature formulas and creates output list def featurePrediction(feature): if vkNoAdjustment: mass = feature[2] else: mass = adjust(feature[2], feature[1]) # mz & polarity uncertainty = mass * vkError / 1e6 prediction = predict(mass, uncertainty, 0, vkMaxIndex) if prediction != -1: feature[2] = mass predictions = predictNeighbors(mass, uncertainty, prediction) feature[5] = predictions predictionClosest = predictions[0] formula = predictionClosest[1] formulaList = re.findall('[A-Z][a-z]?|[0-9]+', formula) formulaDictionary = {'C':0,'H':0,'O':0,'N':0} i = 0; while i < len(formulaList): if formulaList[i] in formulaDictionary: # if there is only one of this element if i+1 == len(formulaList) or formulaList[i+1].isalpha(): formulaDictionary[formulaList[i]] = 1 else: formulaDictionary[formulaList[i]] = formulaList[i+1] i+=1 i+=1 predictionClosest.append(formulaDictionary) hc = float(formulaDictionary['H'])/float(formulaDictionary['C']) oc = float(formulaDictionary['O'])/float(formulaDictionary['C']) nc = float(formulaDictionary['N'])/float(formulaDictionary['C']) predictionClosestDelta = feature[5][0][2] feature += [predictionClosestDelta, hc, oc, nc] return(feature) # adjust observed mass to a neutral mass def adjust(mass, polarity): # value to adjust by proton = 1.007276 if polarity == 'positive': mass += proton elif polarity == 'negative': mass -= proton return mass # Binary search to match observed mass to known mass within error # https://en.wikipedia.org/wiki/Binary_search_tree def predict(mass, uncertainty, left, right): mid = ((right - left) / 2) + left if left <= mid <= right and mid <= vkMaxIndex: delta = float(vkMass[mid]) - mass if uncertainty >= abs(delta): return mid elif uncertainty < delta: return predict(mass, uncertainty, left, mid-1) else: return predict(mass, uncertainty, mid+1, right) return -1 # find and sort known masses within error limit of observed mass def predictNeighbors(mass, uncertainty, prediction): i = 0 neighbors = [[vkMass[prediction],vkFormula[prediction],(float(vkMass[prediction])-mass)],] while prediction+i+1 <= vkMaxIndex: neighbor = prediction+i+1 delta = float(vkMass[neighbor])-mass if uncertainty >= abs(delta): neighbors.append([vkMass[neighbor],vkFormula[neighbor],delta]) i += 1 else: break i = 0 while prediction+i-1 >= 0: neighbor = prediction+i-1 delta = float(vkMass[neighbor])-mass if uncertainty >= abs(delta): neighbors.append([vkMass[neighbor],vkFormula[neighbor],(float(vkMass[neighbor])-mass)]) i -= 1 else: break neighbors = sorted(neighbors, key = (lambda delta: abs(delta[2]))) return neighbors # write output file def saveForcast(vkOutputList): try: with open(vkOutput+'.tsv', 'w') as f: f.writelines(str("sample_id\tpolarity\tmz\tretention_time\tintensity\tpredictions\tdelta\tH:C\tO:C\tN:C") + '\n') for feature in vkOutputList: f.writelines(feature[0]+'\t'+feature[1]+'\t'+str(feature[2])+'\t'+str(feature[3])+'\t'+str(feature[4])+'\t'+str(feature[5])+'\t'+str(feature[6])+'\t'+str(feature[7])+'\t'+str(feature[8])+'\t'+str(feature[9])+'\t'+'\n') except ValueError: print('"%s" could not be saved.' % filename) def plotRatios(vkData): max_rt = 0 min_intensity = 10.0**10 max_intensity = 0.0 max_hc = 0 max_oc = 0 max_nc = 0 for row in vkData: if row[3] > max_rt: max_rt = row[3] intensity = float(row[4]) if intensity < min_intensity: min_intensity = intensity if intensity > max_intensity: max_intensity = intensity if row[7] > max_hc: max_hc = row[7] if row[8] > max_oc: max_oc = row[8] if row[9] > max_nc: max_nc = row[9] labels = ['sampleID', 'polarity', 'mz', 'rt', 'intensity', 'predictions', 'delta', 'hc', 'oc', 'nc'] df = pd.DataFrame.from_records(vkData, columns=labels) sampleIDs = df.sampleID.unique() data = [] menus = [] i = 0 for sampleID in sampleIDs: dfSample = df.loc[df['sampleID'] == sampleID] if vkSizeAlgo == 0: size = dfSample.intensity.apply(lambda x: vkSize) else: size = dfSample.intensity.apply(lambda x: vkSize+4*vkSize*float(x)/max_intensity) trace = go.Scatter( x = dfSample.oc, y = dfSample.hc, text = dfSample.predictions.apply(lambda x: "Prediction: "+str(x[0][1])+"<br>mz: " +str(x[0][0])+"<br>Delta: "+str(x[0][2])), line = dict(width = 0.5), mode = 'markers', marker = dict( size = size, color = dfSample.rt, colorscale = 'Viridis', cmin = 0, cmax = max_rt, colorbar=dict(title='Retention Time (s)'), line = dict(width = 0.5), showscale = True ), opacity = 0.8 ) data.append(trace) vision = [] j = 0 while j < len(sampleIDs): if j != i: vision.append(False) else: vision.append(True) j += 1 menu = dict( method = 'update', label = sampleID, args = [{'visible': vision}, {'title': sampleID}] ) menus.append(menu) i += 1 updatemenus = list([ dict( active = -1, buttons = menus ) ]) layout = go.Layout( title = "Van Krevelen Diagram", showlegend = False, xaxis = dict( title = 'Oxygen to Carbon Ratio', zeroline = False, gridcolor = 'rgb(183,183,183)', showline = True, range = [0, max_oc] ), yaxis = dict( title = 'Hydrogen to Carbon Ratio', zeroline = False, gridcolor = 'rgb(183,183,183)', showline = True, range = [0, max_hc] ), margin = dict(r=0, b=100, l=100, t=100), updatemenus = updatemenus ) fig = go.Figure(data=data, layout=layout) py.plot(fig, auto_open=False, show_link=False, filename=vkOutput+'.html') def polaritySanitizer(sample_polarity): if sample_polarity.lower() in {'positive','pos','+'}: sample_polarity = 'positive' elif sample_polarity.lower() in {'negative', 'neg', '-'}: sample_polarity = 'negative' else: print('A sample has an unknown polarity type: %s. Polarity in the XCMS sample metadata should be set to "negative" or "positive".' % sample_polarity) raise ValueError return sample_polarity # main if vkInputType == "tsv": vkInput = [] tsvFile = getattr(args, "input") try: with open(tsvFile, 'r') as f: next(f) # skip hearder line tsvData = csv.reader(f, delimiter='\t') for row in tsvData: vkInput.append([row[0],polaritySanitizer(row[1]),float(row[2]),float(row[3]),float(row[4]),[]]) except ValueError: print('The %s data file could not be read.' % tsvFile) vkData = forecaster(vkInput) saveForcast(vkData) plotRatios(vkData) elif vkInputType == "xcms": vkInput = [] xcmsSampleMetadataFile = getattr(args, "sample_metadata") try: polarity = {} with open(xcmsSampleMetadataFile, 'r') as f: xcmsSampleMetadata = csv.reader(f, delimiter='\t') next(xcmsSampleMetadata, None) # skip header for row in xcmsSampleMetadata: sample = row[0] sample_polarity = polaritySanitizer(row[2]) polarity[sample] = sample_polarity except ValueError: print('The %s data file could not be read. Check that polarity is set to "negative" or "positive"' % xcmsSampleMetadataFile) xcmsVariableMetadataFile = getattr(args, "variable_metadata") try: mz = {} rt = {} variable_index = {} mz_index = int() rt_index = int() with open(xcmsVariableMetadataFile, 'r') as f: xcmsVariableMetadata = csv.reader(f, delimiter='\t') i = 0 for row in xcmsVariableMetadata: if i != 0: mz[row[0]] = float(row[mz_index]) rt[row[0]] = float(row[rt_index]) else: for column in row: variable_index[column] = i i += 1 mz_index = variable_index["mz"] rt_index = variable_index["rt"] except ValueError: print('The %s data file could not be read.' % xcmsVariableMetadataFile) xcmsDataMatrixFile = getattr(args, "data_matrix") try: with open(xcmsDataMatrixFile, 'r') as f: xcmsDataMatrix = csv.reader(f, delimiter='\t') first_row = True for row in xcmsDataMatrix: if first_row: sample_id = row first_row = False else: i = 0 while(i < len(row)): if i == 0: i+=1 else: intensity = row[i] if intensity not in {'NA', '#DIV/0!', '0'}: variable = row[0] sample = sample_id[i] # XCMS data may include empty columns if sample != "": vkInput.append([sample, polarity[sample], mz[variable], rt[variable], float(intensity), []]) i+=1 except ValueError: print('The %s data file could not be read.' % xcmsDataMatrixFile) vkData = forecaster(vkInput) saveForcast(vkData) plotRatios(vkData) else: vkData = [] tsvPlotvFile = getattr(args, "input") try: with open(tsvPlotFile, 'r') as f: next(f) # skip header line plotData = csv.reader(f, delimiter='\t') for row in plotData: vkData.append([row[0],row[1],float(row[2]),float(row[3]),float(row[4]),list(row[4]),float(row[5]),float(row[6]),float(row[7]),float(row[8])]) except ValueError: print('The %s data file could not be read.' % tsvFile) plotRatios(vkData)