Mercurial > repos > ethevenot > batchcorrection
comparison batch_correction_all_loess_script.R @ 0:b74d1d533dea draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/batchcorrection.git commit 241fb99a843e13195c5054cd9731e1561f039bde
| author | ethevenot |
|---|---|
| date | Thu, 04 Aug 2016 11:40:35 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:b74d1d533dea |
|---|---|
| 1 loessF <- function(datVn, qcaVi, preVi, spnN, vrbL=FALSE) { | |
| 2 | |
| 3 if(length(qcaVi) < 5) { | |
| 4 | |
| 5 if(vrbL) | |
| 6 cat("\nWarning: less than 5 '", refC, "'; linear regression will be performed instead of loess regression for this batch\n", sep="") | |
| 7 | |
| 8 return(predict(lm(datVn[qcaVi] ~ qcaVi), | |
| 9 newdata = data.frame(qcaVi = preVi))) | |
| 10 | |
| 11 } else { | |
| 12 | |
| 13 return(predict(loess(datVn[qcaVi] ~ qcaVi, | |
| 14 control = loess.control(surface = "direct"), | |
| 15 span = spnN), | |
| 16 newdata = data.frame(qcaVi = preVi))) | |
| 17 | |
| 18 } | |
| 19 | |
| 20 ## Note: | |
| 21 ## the surface = 'direct' argument allows extrapolation | |
| 22 | |
| 23 } ## loessF | |
| 24 | |
| 25 plotBatchF <- function(datMN, samDF.arg, spnN.arg) { | |
| 26 | |
| 27 maiC <- switch(gsub("MN", "", deparse(substitute(datMN))), | |
| 28 raw = "Raw", | |
| 29 nrm = "Normalized") | |
| 30 | |
| 31 colVc <- c(sample = "green4", | |
| 32 pool = "red", | |
| 33 blank = "black", | |
| 34 other = "yellow") | |
| 35 | |
| 36 par(font = 2, font.axis = 2, font.lab = 2, lwd = 2, pch = 18) | |
| 37 | |
| 38 layout(matrix(c(1, 1, 2, 3), nrow = 2), | |
| 39 widths = c(0.7, 0.3)) | |
| 40 | |
| 41 obsNamVc <- rownames(datMN) | |
| 42 | |
| 43 obsColVc <- sapply(samDF.arg[, "sampleType"], | |
| 44 function(typC) | |
| 45 ifelse(typC %in% names(colVc), colVc[typC], colVc["other"])) | |
| 46 | |
| 47 ## Graphic 1: Sum of intensities for each sample | |
| 48 | |
| 49 par(mar = c(3.6, 3.6, 3.1, 0.6)) | |
| 50 | |
| 51 batTab <- table(samDF.arg[, "batch"]) | |
| 52 | |
| 53 sumVn <- rowSums(datMN, na.rm = TRUE) | |
| 54 | |
| 55 plot(sumVn, | |
| 56 cex = 1.2, | |
| 57 col = obsColVc, | |
| 58 pch = 18, | |
| 59 xaxs = "i", | |
| 60 xlab = "", | |
| 61 ylab = "") | |
| 62 | |
| 63 mtext("Injection order", | |
| 64 line = 2.2, | |
| 65 side = 1) | |
| 66 mtext("Sum of variable intensities", | |
| 67 line = 2.2, | |
| 68 side = 2) | |
| 69 | |
| 70 mtext(maiC, cex = 1.2, line = 1.5, side = 3) | |
| 71 | |
| 72 abline(v = cumsum(batTab) + 0.5, | |
| 73 col = "red") | |
| 74 | |
| 75 mtext(names(batTab), | |
| 76 at = batTab / 2 + c(0, cumsum(batTab[-length(batTab)]))) | |
| 77 | |
| 78 obsColVuc <- obsColVc[sort(unique(names(obsColVc)))] | |
| 79 | |
| 80 text(rep(batTab[1], times = length(obsColVuc)), | |
| 81 par("usr")[3] + (0.97 - length(obsColVuc) * 0.03 + 1:length(obsColVuc) * 0.03) * diff(par("usr")[3:4]), | |
| 82 col = obsColVuc, | |
| 83 font = 2, | |
| 84 labels = names(obsColVuc), | |
| 85 pos = 2) | |
| 86 | |
| 87 for(batC in names(batTab)) { | |
| 88 | |
| 89 batSeqVi <- which(samDF.arg[, "batch"] == batC) | |
| 90 batPooVi <- intersect(batSeqVi, | |
| 91 grep("pool", samDF.arg[, "sampleType"])) | |
| 92 batSamVi <- intersect(batSeqVi, | |
| 93 grep("sample", samDF.arg[, "sampleType"])) | |
| 94 if(length(batPooVi)) | |
| 95 lines(batSeqVi, | |
| 96 loessF(sumVn, batPooVi, batSeqVi, spnN=spnN.arg), | |
| 97 col = colVc["pool"]) | |
| 98 lines(batSeqVi, | |
| 99 loessF(sumVn, batSamVi, batSeqVi, spnN=spnN.arg), | |
| 100 col = colVc["sample"]) | |
| 101 | |
| 102 } | |
| 103 | |
| 104 ## Graphics 2 and 3 (right): PCA score plots of components 1-4 | |
| 105 | |
| 106 radVn <- seq(0, 2 * pi, length.out = 100) | |
| 107 epsN <- .Machine[["double.eps"]] ## [1] 2.22e-16 | |
| 108 | |
| 109 pcaMN <- datMN | |
| 110 | |
| 111 pcaLs <- opls(pcaMN, predI = 4, printL = FALSE, plotL = FALSE) | |
| 112 tMN <- getScoreMN(pcaLs) | |
| 113 vRelVn <- pcaLs@modelDF[, "R2X"] | |
| 114 | |
| 115 n <- nrow(tMN) | |
| 116 hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) | |
| 117 | |
| 118 hotFisN <- hotN * qf(0.95, 2, n - 2) | |
| 119 | |
| 120 pcsLs <- list(c(1, 2), c(3, 4)) | |
| 121 | |
| 122 par(mar = c(3.6, 3.6, 0.6, 1.1)) | |
| 123 | |
| 124 for(pcsN in 1:length(pcsLs)) { | |
| 125 | |
| 126 pcsVn <- pcsLs[[pcsN]] | |
| 127 | |
| 128 tcsMN <- tMN[, pcsVn] | |
| 129 | |
| 130 micMN <- solve(cov(tcsMN)) | |
| 131 | |
| 132 n <- nrow(tMN) | |
| 133 hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) | |
| 134 | |
| 135 hotFisN <- hotN * qf(0.95, 2, n - 2) | |
| 136 | |
| 137 hotVn <- apply(tcsMN, | |
| 138 1, | |
| 139 function(x) 1 - pf(1 / hotN * t(as.matrix(x)) %*% micMN %*% as.matrix(x), 2, n - 2)) | |
| 140 | |
| 141 obsHotVi <- which(hotVn < 0.05) | |
| 142 | |
| 143 xLabC <- paste("t", | |
| 144 pcsVn[1], | |
| 145 "(", | |
| 146 round(vRelVn[pcsVn[1]] * 100), | |
| 147 "%)", | |
| 148 sep = "") | |
| 149 | |
| 150 yLabC <- paste("t", | |
| 151 pcsVn[2], | |
| 152 "(", | |
| 153 round(vRelVn[pcsVn[2]] * 100), | |
| 154 "%)", | |
| 155 sep = "") | |
| 156 | |
| 157 xLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 1]) * hotFisN), max(abs(tcsMN[, 1]))) | |
| 158 yLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 2]) * hotFisN), max(abs(tcsMN[, 2]))) | |
| 159 | |
| 160 plot(tcsMN, | |
| 161 main = "", | |
| 162 type = "n", | |
| 163 xlab = "", | |
| 164 ylab = "", | |
| 165 xlim = xLimVn, | |
| 166 ylim = yLimVn) | |
| 167 | |
| 168 mtext(xLabC, | |
| 169 line = 2.2, | |
| 170 side = 1) | |
| 171 mtext(yLabC, | |
| 172 line = 2.2, | |
| 173 side = 2) | |
| 174 | |
| 175 par(lwd = 1) | |
| 176 | |
| 177 abline(v = axTicks(1), | |
| 178 col = "grey") | |
| 179 | |
| 180 abline(h = axTicks(2), | |
| 181 col = "grey") | |
| 182 | |
| 183 abline(v = 0) | |
| 184 abline(h = 0) | |
| 185 | |
| 186 lines(sqrt(var(tcsMN[, 1]) * hotFisN) * cos(radVn), | |
| 187 sqrt(var(tcsMN[, 2]) * hotFisN) * sin(radVn)) | |
| 188 | |
| 189 points(tcsMN, | |
| 190 col = obsColVc, | |
| 191 pch = 18) | |
| 192 | |
| 193 if(length(obsHotVi)) | |
| 194 text(tcsMN[obsHotVi, 1], | |
| 195 tcsMN[obsHotVi, 2], | |
| 196 col = obsColVc[obsHotVi], | |
| 197 labels = obsNamVc[obsHotVi], | |
| 198 pos = 3) | |
| 199 | |
| 200 } ## for(pcsN in 1:length(pcsLs)) { | |
| 201 | |
| 202 return(invisible(list(sumVn = sumVn, | |
| 203 tcsMN = tcsMN))) | |
| 204 | |
| 205 } ## plotBatchF | |
| 206 | |
| 207 shiftBatchCorrectF <- function(rawMN.arg, | |
| 208 samDF.arg, | |
| 209 refC.arg, | |
| 210 spnN.arg) { | |
| 211 | |
| 212 cat("\nReference observations are: ", refC.arg, "\n") | |
| 213 | |
| 214 ## computing median off all pools (or samples) for each variable | |
| 215 | |
| 216 refMeaVn <- apply(rawMN.arg[samDF.arg[, "sampleType"] == refC.arg, ], | |
| 217 2, | |
| 218 function(feaRefVn) mean(feaRefVn, na.rm = TRUE)) | |
| 219 | |
| 220 ## splitting data and sample metadata from each batch | |
| 221 | |
| 222 batRawLs <- split(as.data.frame(rawMN.arg), | |
| 223 f = samDF.arg[, "batch"]) | |
| 224 batRawLs <- lapply(batRawLs, function(inpDF) as.matrix(inpDF)) | |
| 225 | |
| 226 batSamLs <- split(as.data.frame(samDF.arg), | |
| 227 f = samDF.arg[, "batch"]) | |
| 228 | |
| 229 ## checking extrapolation: are there pools at the first and last observations of each batch | |
| 230 | |
| 231 if(refC.arg == "pool") { | |
| 232 pooExtML <- matrix(FALSE, nrow = 2, ncol = length(batRawLs), | |
| 233 dimnames = list(c("first", "last"), names(batRawLs))) | |
| 234 for(batC in names(batSamLs)) { | |
| 235 batSamTypVc <- batSamLs[[batC]][, "sampleType"] | |
| 236 pooExtML["first", batC] <- head(batSamTypVc, 1) == "pool" | |
| 237 pooExtML["last", batC] <- tail(batSamTypVc, 1) == "pool" | |
| 238 } | |
| 239 if(!all(c(pooExtML))) { | |
| 240 cat("\nWarning: Pools are missing at the first and/or last position of the following batches:\n") | |
| 241 pooExtBatVi <- which(!apply(pooExtML, 2, all)) | |
| 242 for(i in 1:length(pooExtBatVi)) | |
| 243 cat(names(pooExtBatVi)[i], ": ", | |
| 244 paste(rownames(pooExtML)[!pooExtML[, pooExtBatVi[i]]], collapse = ", "), "\n", sep = "") | |
| 245 cat("Extrapolating loess fits for these batches may result in inaccurate modeling!\n") | |
| 246 } | |
| 247 } | |
| 248 | |
| 249 ## normalizing | |
| 250 | |
| 251 nrmMN <- NULL ## normalized data matrix to be computed | |
| 252 | |
| 253 cat("\nProcessing batch:") | |
| 254 | |
| 255 for(batC in names(batRawLs)) { ## processing each batch individually | |
| 256 | |
| 257 cat("\n", batC) | |
| 258 | |
| 259 batRawMN <- batRawLs[[batC]] | |
| 260 batSamDF <- batSamLs[[batC]] | |
| 261 | |
| 262 batAllVi <- 1:nrow(batRawMN) | |
| 263 | |
| 264 batRefVi <- grep(refC.arg, batSamDF[, "sampleType"]) | |
| 265 | |
| 266 ## prediction of the loess fit | |
| 267 | |
| 268 batLoeMN <- apply(batRawMN, | |
| 269 2, | |
| 270 function(rawVn) loessF(rawVn, batRefVi, batAllVi, spnN=spnN.arg, vrbL=TRUE)) | |
| 271 | |
| 272 ## normalization | |
| 273 | |
| 274 batLoeMN[batLoeMN <= 0] <- NA | |
| 275 | |
| 276 batNrmMN <- batRawMN / batLoeMN | |
| 277 | |
| 278 nrmMN <- rbind(nrmMN, | |
| 279 batNrmMN) | |
| 280 | |
| 281 } | |
| 282 | |
| 283 cat("\n") | |
| 284 | |
| 285 nrmMN <- sweep(nrmMN, MARGIN = 2, STATS = refMeaVn, FUN = "*") | |
| 286 | |
| 287 return(nrmMN) | |
| 288 | |
| 289 } ## shiftBatchCorrectF |
