Mercurial > repos > ethevenot > profia
view profia_config.xml @ 1:4753e64cf694 draft
planemo upload for repository https://github.com/workflow4metabolomics/profia.git commit 0a90b8ee1577263ace397124d8b0e34d1e630f51
author | ethevenot |
---|---|
date | Wed, 03 May 2017 10:49:08 -0400 |
parents | 39ccace77270 |
children | 3f8ae071bdda |
line wrap: on
line source
<tool id="profia" name="proFIA" version="3.0.4"> <description>Preprocessing of FIA-HRMS data</description> <requirements> <requirement type="package">r-batch</requirement> <requirement type="package">r-FNN</requirement> <requirement type="package">r-maxLik</requirement> <requirement type="package">r-minpack.lm</requirement> <requirement type="package">r-pracma</requirement> <requirement type="package">bioconductor-xcms</requirement> <requirement type="package">bioconductor-plasFIA</requirement> <requirement type="package">bioconductor-proFIA</requirement> </requirements> <stdio> <exit_code range="1:" level="fatal" /> </stdio> <command> Rscript $__tool_directory__/profia_wrapper.R #if $inputs.input == "lib": library $__app__.config.user_library_import_dir/$__user_email__/$inputs.library #elif $inputs.input == "zip_file": zipfile $inputs.zip_file #end if ppmN "$ppmN" ppmGroupN "$ppmGroupN" fracGroupN "$fracGroupN" kI "$kI" dataMatrix_out "$dataMatrix_out" sampleMetadata_out "$sampleMetadata_out" variableMetadata_out "$variableMetadata_out" figure "$figure" information "$information" </command> <inputs> <conditional name="inputs"> <param name="input" type="select" label="Choose your input method" > <option value="zip_file" selected="true">Zip file from your history containing your raw files</option> <option value="lib" >Library directory name</option> </param> <when value="zip_file"> <param name="zip_file" type="data" format="no_unzip.zip,zip" label="Zip file (see the details for file upload in the help section below)" /> </when> <when value="lib"> <param name="library" type="text" size="40" label="Library directory name" help="The name of your directory containing all your data" > <validator type="empty_field"/> </param> </when> </conditional> <param name="ppmN" label="Maximum deviation between centroids during band detection (in ppm)" type="text" value = "5" help="[ppm]" /> <param name="ppmGroupN" label="Accuracy of the mass spectrometer to be used during feature alignment (in ppm)" type="text" value = "5" help="[ppmGroup] Should be inferior or equal to the deviation parameter above." /> <param name="fracGroupN" label=" Minimum fraction of samples in which a peak should be detected in at least one class to be kept during feature alignment" type="text" value = "0.5" help="[fracGroup]" /> <param name="kI" label="Number of neighbour features to be used for imputation (select 0 to skip the imputation step)" type="text" value = "5" help="[k]" /> </inputs> <outputs> <data name="dataMatrix_out" label="${tool.name}_dataMatrix.tsv" format="tabular" ></data> <data name="sampleMetadata_out" label="${tool.name}_sampleMetadata.tsv" format="tabular" ></data> <data name="variableMetadata_out" label="${tool.name}_variableMetadata.tsv" format="tabular" ></data> <data name="figure" label="${tool.name}_figure.pdf" format="pdf"/> <data name="information" label="${tool.name}_information.txt" format="txt"/> </outputs> <tests> <test> <param name="inputs|input" value="zip_file" /> <param name="inputs|zip_file" value="input-plasFIA.zip" ftype="zip" /> <param name="ppmN" value="2"/> <param name="ppmGroupN" value="1"/> <param name="fracGroupN" value="0.1"/> <param name="kI" value="2"/> <output name="dataMatrix_out" file="output-dataMatrix.tsv" /> <output name="information"> <assert_contents> <has_text text="722 groups have been done" /> <has_text text="3 samples x 644 variables" /> <has_text text="78 excluded variables (near zero variance)" /> <has_text text="2101 peaks detected" /> </assert_contents> </output> </test> </tests> <help> .. class:: infomark **Author** Alexis Delabriere and Etienne Thevenot (CEA, LIST, MetaboHUB Paris, etienne.thevenot@cea.fr) --------------------------------------------------- .. class:: infomark **Please cite** Delabriere A., Hohenester U., Colsch B., Junot C., Fenaille F. and Thevenot E.A. *proFIA*: A data preprocessing workflow for Flow Injection Analysis coupled to High-Resolution Mass Spectrometry. *submitted*. --------------------------------------------------- .. class:: infomark **R package** The **proFIA** package is available from the bioconductor repository `http://bioconductor.org/packages/proFIA <http://bioconductor.org/packages/proFIA>`_ --------------------------------------------------- .. class:: infomark **Tool updates** See the **NEWS** section at the bottom of this page --------------------------------------------------- ========================================================== *proFIA*: A preprocessing workflow for FIA-HRMS data ========================================================== ----------- Description ----------- **Flow Injection Analysis coupled to High-Resolution Mass Spectrometry (FIA-HRMS)** is a promising approach for **high-throughput metabolomics** (Madalinski *et al.*, 2008; Fuhrer *et al.*, 2011; Draper *et al.*, 2013). FIA- HRMS data, however, cannot be preprocessed with current software tools which rely on liquid chromatography separation, or handle low resolution data only. The **proFIA module is a workflow** allowing to preprocess FIA-HRMS raw data in **centroid** mode and open format (netCDF, mzData, mzXML, and mzML), and generates the table of peak intensities (**peak table**). The workflow consists in **peak detection and quantification** within individual sample files, followed by **alignment** between files in the m/z dimension, and **imputation** of the missing values in the final peak table (Delabriere *et al.*, submitted). For each ion, the graph representing the intensity as a function of time is called a **flowgram**. A flowgram can be modeled as I = kP + ME(P) + B + e, where k is the response factor (corresponding to the ionization properties of the analyte), P is the **sample peak** (normalized profile which is common for all analytes from a sample and depends on the flow injection conditions only), ME is the **matrix effect**, B is the **solvent baseline**, and e is the heteroscedastic noise. The generated peak table is available in the '3 table' W4M tabular format (**dataMatrix**, **sampleMetadata**, and **variableMetadata**) for downstream statistical analysis and annotation with W4M modules. A figure provides **diagnostics** and visualization of the preprocessed data set. --------------------------------------------------- .. class:: infomark **References** | Delabriere A., Hohenester U., Junot C. and Thevenot E.A. proFIA: A data preprocessing workflow for Flow Injection Analysis coupled to High-Resolution Mass Spectrometry. *submitted*. | Draper J., Lloyd A., Goodacre R. and Beckmann M. (2013). Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. *Metabolomics* 9, 4-29. (http://dx.doi.org/10.1007/s11306-012-0449-x) | Fuhrer T., Dominik H., Boris B. and Zamboni N. (2011). High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. *Analytical Chemistry* 83, 7074-7080. (http://dx.doi.org/10.1021/ac201267k) | Madalinski G., Godat E., Alves S., Lesage D., Genin E., Levi P., Labarre J., Tabet J., Ezan E. and Junot, C. (2008). Direct introduction of biological samples into a LTQ-orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. *Analytical Chemistry* 80, 3291-3303. (http://dx.doi.org/10.1021/ac7024915) --------------------------------------------------- ----------------- Workflow position ----------------- .. image:: profia_workflowPositionImage.png :width: 600 ----------- Input files ----------- +---------------------------+------------+ | Parameter : num + label | Format | +===========================+============+ | 1 : Choose your inputs | zip | +---------------------------+------------+ --------------------------------------------------- .. class:: warningmark VERY IMPORTANT: Your data must be in **centroid** mode (centroidization of raw files and conversion to an open format can be achieved with the proteowizard software: http://proteowizard.sourceforge.net/). You have two methods for your inputs: | Zip file (recommended): You can put a zip file containing your inputs: myinputs.zip (containing all your conditions as sub-directories; see below). | library folder: You must specify the name of your "library" (folder) created within your space project (for example: /projet/externe/institut/login/galaxylibrary/yourlibrary). Your library must contain all your conditions as sub-directories. **Steps for creating the zip file** **Step1: Creating your directory and hierarchize the subdirectories** .. class:: warningmark VERY IMPORTANT: If you zip your files under Windows, you must use the **7Zip** software (http://www.7-zip.org/), otherwise your zip will not be well unzipped on the platform W4M (zip corrupted bug). 1a) Prepare a parent folder with the name of your data set (e.g., 'arabidopsis') containing your files: | 'arabidopsis/w1.raw' | 'arabidopsis/w2.raw' | ... | 'arabidopsis/m1.raw' | 'arabidopsis/m2.raw' | ... | 1b) If you have several experimental conditions resulting in distinct profiles of your samples (e.g. 'wild-type' and 'mutant' genotypes), create subfolders for your files (e.g., 'wild' and 'mutant') into your parent folder: | 'arabidopsis/wild/w1.raw' | 'arabidopsis/wild/w2.raw' | ... | 'arabidopsis/mutant/m1.raw' | 'arabidopsis/mutant/m2.raw' | ... | **Step2: Creating a zip file** | Zip your **parent** folder (here the 'arabidopsis' folder) containing all the subfolders and files with **7Zip**. | **Step 3 : Uploading it to our Galaxy server** | If your zip file is less than 2Gb, you get use the **Upload File** tool and the **no_unzip.zip** type to upload it. | Otherwise if your zip file is larger than 2Gb, please refer to the HOWTO on workflow4metabolomics.org (http://application.sb-roscoff.fr/download/w4m/howto/galaxy_upload_up_2Go.pdf). | For more informations, don't hesitate to send us an email at supportATworkflow4metabolomics.org). | ---------- Parameters ---------- Maximum deviation between centroids during band detection; in ppm (default = 5) | m/z tolerance of centroids corresponding to the same ion from one scan to the other. | Accuracy of the mass spectrometer to be used during feature alignment; in ppm (default = 5) | Should be inferior or equal to the deviation parameter above. | Minimum fraction of samples in which a peak should be detected in at least one class to be kept during feature alignment (default = 0.5) | Identical to the corresponding parameter in XCMS. | Number of neighbour features to be used for imputation (default = 5) | Select 0 to skip the imputation step. | ------------ Output files ------------ dataMatrix.tabular | **dataMatrix** tabular separated file with the variables as rows and samples as columns. Missing values are indicated as 'NA' (i.e. when the signal was not significantly different from noise). | sampleMetadata.tabular | **sampleMetadata** tabular separated file containing the sample metadata as columns. | variableMetadata.tabular | **variableMetadata** tabular separated file containing the variable metadata as columns. The **timeShifted** flag is set to 1 when the flowgram is time shifted compared to the sample peak (probably due to liquid retention in the FI tube). The **corSampPeakMean** metric is the correlation between the feature flowgram and the sample peak (values are in [-1, 1]). A value below 0.2 suggests that the feature signal is affected by a strong matrix effect. The **meanSolvent** is the mean baseline signal in the feature flowgrams. The **signalOverSolventPvalueMean** is the mean p-value of the tests discriminating between signal and baseline solvent. | figure.pdf | Visualization and diagnostics about the preprocessed data set; **Feature quality**: Number of detected features per sample for each of the three categories: 'Well-behaved' features have a peak shape close to the sample peak (optimal FIA acquisition is achieved when the majority of the features fall into this category); 'Shifted' indicates a time shift compared to the sample peak, and probably results from retention in the FI tube; 'Significant Matrix Effect' corresponds to a correlation between the feature and the samples peaks of less than 0.2, which is usually caused by a strong matrix effect; **Sample peaks**: Visualization of the peak model for each sample; should have close shapes in case of similar FIA conditions; **m/z density**: may allow to detect a missing m/z value, and in turn, suggest that the *ppm* parameter should be modified; **PCA score plot** of the log10 intensities to detect sample outliers. | information.txt | Text file with all messages and warnings generated during the computation. | --------------------------------------------------- --------------- Working example --------------- Figure output ============= .. image:: profia_workingExampleImage.png :width: 600 --------------------------------------------------- ---- NEWS ---- CHANGES IN VERSION 3.0.4 ======================== MINOR MODIFICATION Details added in the documentation CHANGES IN VERSION 3.0.2 ======================== NEW FEATURE Parallel processing CHANGES IN VERSION 3.0.0 ======================== NEW FEATURE Creation of the tool </help> <citations> <citation type="bibtex">@Article{DelabriereSubmitted, Title = {proFIA: A data preprocessing workflow for Flow Injection Analysis coupled to High-Resolution Mass Spectrometry}, Author = {Delabriere, Alexis and Hohenester, Ulli and Colsch, Benoit and Junot, Christophe and Fenaille, Francois and Thevenot, Etienne A}, Journal = {submitted}, Year = {submitted}, Pages = {--}, Volume = {}, Doi = {} }</citation> <citation type="doi">10.1093/bioinformatics/btu813</citation> </citations> </tool>