changeset 11:e5fcbabbdea7 draft

Uploaded
author fcaramia
date Wed, 21 Aug 2013 22:13:03 -0400
parents 86292c2b0ba9
children d49d06d35683
files edgeR.pl
diffstat 1 files changed, 198 insertions(+), 171 deletions(-) [+]
line wrap: on
line diff
--- a/edgeR.pl	Tue May 14 21:40:04 2013 -0400
+++ b/edgeR.pl	Wed Aug 21 22:13:03 2013 -0400
@@ -8,9 +8,9 @@
 $| = 1;
 
 # Grab and set all options
-my %OPTIONS = (a => "glm", d => "tag", f => "BH", p => 0.3, r => 5, u => "movingave");
+my %OPTIONS = (a => "glm", d => "tag", f => "BH", r => 5, u => "movingave");
 
-getopts('a:d:e:f:h:lmn:o:p:r:tu:', \%OPTIONS);
+getopts('a:d:e:f:h:lmn:o:r:tu:', \%OPTIONS);
 
 die qq(
 Usage:   edgeR.pl [OPTIONS] factor::factor1::levels [factor::factor2::levels ...] cp::cont_pred1::values [cp::cont_pred2::values ...] cnt::contrast1 [cnt::contrast2] matrix
@@ -24,7 +24,6 @@
 			-m		Perform all pairwise comparisons
 			-n	STR	File name to output the normalised digital gene expression matrix (only applicable when usinf glm or limma model)
 			-o	STR	File name to output csv file with results
-			-p	FLT	The proportion of all tags/genes to be used for the locally weighted estimation of the tagwise dispersion, ony applicable when 1 factor analysis selected (default: $OPTIONS{p})
 			-r	INT	Common Dispersion Rowsum Filter, ony applicable when 1 factor analysis selected (default: $OPTIONS{r})
 			-t		Estimate Tagwise Disp when performing 1 factor analysis
 			-u	STR	Method for allowing the prior distribution for the dispersion to be abundance- dependent ["movingave", "tricube", "none"] (default: $OPTIONS{u})
@@ -34,46 +33,46 @@
 my $matrix = pop @ARGV;
 
 make_path($OPTIONS{e});
-open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n"; 
+open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n";
 print Rcmd "
-	zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\")
-	sink(zz)
-	sink(zz, type=\"message\")
-	
-	library(edgeR)
-	library(limma)
+zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\")
+sink(zz)
+sink(zz, type=\"message\")
+
+library(edgeR)
+library(limma)
 
-	# read in matrix and groups
-	toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T)
-	groups <- sapply(toc[1, -1], strsplit, \":\")
-	for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] }
-	colnames(toc) <- make.names(toc[2,])
-	toc[,1] <- gsub(\",\", \".\", toc[,1])
-	tagnames <- toc[-(1:2), 1]
-	rownames(toc) <- toc[,1]
-	toc <- toc[-(1:2), -1]
-	for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i])
-	norm_factors <- calcNormFactors(as.matrix(toc))
+# read in matrix and groups
+toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T)
+groups <- sapply(toc[1, -1], strsplit, \":\")
+for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] }
+colnames(toc) <- make.names(toc[2,])
+toc[,1] <- gsub(\",\", \".\", toc[,1])
+tagnames <- toc[-(1:2), 1]
+rownames(toc) <- toc[,1]
+toc <- toc[-(1:2), -1]
+for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i])
+norm_factors <- calcNormFactors(as.matrix(toc))
 
-	pw_tests <- list()
-	uniq_groups <- unique(names(groups))
-	for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j])
-	DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups))
-	pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14)
-	for(i in 1:length(pw_tests)) {
-		j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1])
-		par(mfrow = c(1, 2))
-		maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]]))
-		grid(col = \"blue\")
-		abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4)
-		maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\"))
-		grid(col = \"blue\")
-	}
-	dev.off()
-	pdf(file=\"$OPTIONS{e}/MDSplot.pdf\")
-	plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3))
-	dev.off()
-	tested <- list()
+pw_tests <- list()
+uniq_groups <- unique(names(groups))
+for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j])
+DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups))
+pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14)
+for(i in 1:length(pw_tests)) {
+	j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1])
+	par(mfrow = c(1, 2))
+	maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]]))
+	grid(col = \"blue\")
+	abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4)
+	maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\"))
+	grid(col = \"blue\")
+}
+dev.off()
+pdf(file=\"$OPTIONS{e}/MDSplot.pdf\")
+plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3))
+dev.off()
+tested <- list()
 ";
 
 my $all_cont;
@@ -106,47 +105,54 @@
 
 if($OPTIONS{a} eq "pw") {
 	print Rcmd "
-		disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r})
-	";
+disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r})
+";
 	if(defined $OPTIONS{t}) {
 		print Rcmd "
-			disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\", prop.used=$OPTIONS{p})
-			pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
-			plot(log2(1e06*disp\$conc\$conc.common), disp\$tagwise.dispersion, xlab=\"Counts per million (log2 scale)\", ylab=\"Tagwise dispersion\")
-			abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3)
-			dev.off()
-		"
+disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\")
+pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
+plotBCV(disp, cex=0.4)
+abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3)
+dev.off()
+";
 	}
 	print Rcmd "
-		for(i in 1:length(pw_tests)) {
-			tested[[i]] <- exactTest(disp, pair=pw_tests[[i]])
-			names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")
-		}
-		pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\")
-		for(i in 1:length(pw_tests)) {
-			if(nrow(decideTestsDGE(tested[[i]] , p.value=0.05)) > 0) {
-				de_tags <- rownames(decideTestsDGE(tested[[i]] , p.value=0.05, adjust.method=\"$OPTIONS{f}\"))
-				ttl <- \"(Diff. Exp. Genes With adj. Pvalue < 0.05 highlighted)\"
-			} else {
-				de_tags <- rownames(topTags(tested[[i]], n=100)\$table)
-				ttl <- \"(Top 100 tags highlighted)\"
-			}
-			
-			plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"FC plot\", ttl))
-			abline(h = c(-2, 2), col = \"dodgerblue\")
-		}
-		dev.off()
-	";
+for(i in 1:length(pw_tests)) {
+	tested[[i]] <- exactTest(disp, pair=pw_tests[[i]])
+	names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")
+}
+pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\")
+for(i in 1:length(pw_tests)) {
+	dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\")
+	if(sum(dt) > 0) {
+		de_tags <- rownames(disp)[which(dt != 0)]
+		ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\"
+	} else {
+		de_tags <- rownames(topTags(tested[[i]], n=100)\$table)
+		ttl <- \"Top 100 tags\"
+	}
+
+	if(length(dt) < 5000) {
+		pointcex = 0.5
+	} else {
+		pointcex = 0.2
+	}
+	plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"Smear Plot\", names(tested)[i]), cex=0.5)
+	abline(h = c(-1, 1), col = \"blue\")
+	legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\")
+}
+dev.off()
+";
 } elsif($OPTIONS{a} eq "glm") {
 	for(my $fct = 0; $fct <= $#fact_names; $fct++) {
 		print Rcmd "
-			$fact_names[$fct] <- c($fact[$fct])
-		";
+$fact_names[$fct] <- c($fact[$fct])
+";
 	}
 	for(my $fct = 0; $fct <= $#cp_names; $fct++) {
 		print Rcmd "
-			$cp_names[$fct] <- c($cp[$fct])
-		";
+$cp_names[$fct] <- c($cp[$fct])
+";
 	}
 	my $all_fact = "";
 	if(@fact_names) {
@@ -159,76 +165,94 @@
 		$all_cp = " + ".join(" + ", @cp_names);
 	}
 	print Rcmd "
-		group_fact <- factor(names(groups))
-		design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
-		colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
-	";
+group_fact <- factor(names(groups))
+design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
+colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
+";
 	foreach my $fct (@fact_names) {
 		print Rcmd "
-			colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
-		";
+colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
+";
 	}
 	print Rcmd "
-		disp <- estimateGLMCommonDisp(DGE, design)
-	";
+disp <- estimateGLMCommonDisp(DGE, design)
+";
 	if($OPTIONS{d} eq "tag" || $OPTIONS{d} eq "trend") {
 		print Rcmd "
-			disp <- estimateGLMTrendedDisp(disp, design)
-		";
+disp <- estimateGLMTrendedDisp(disp, design)
+";
 	}
 	if($OPTIONS{d} eq "tag") {
 		print Rcmd "
-			disp <- estimateGLMTagwiseDisp(disp, design)
-			fit <- glmFit(disp, design)
-			pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
-			plot(fit\$abund+log(1e06), sqrt(disp\$tagwise.dispersion), xlab=\"Counts per million (log2 scale)\", ylab=\"Tagwise dispersion\")
-			oo <- order(disp\$abundance)
-			lines(fit\$abundance[oo]+log(1e06), sqrt(disp\$trended.dispersion[oo]), col=\"dodgerblue\", lwd=3)
-			abline(h=sqrt(disp\$common.dispersion), col=\"firebrick\", lwd=3)
-			dev.off()
-		";
+disp <- estimateGLMTagwiseDisp(disp, design)
+fit <- glmFit(disp, design)
+pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
+plotBCV(disp, cex=0.4)
+dev.off()
+";
 	}
 	if(@add_cont) {
 		$all_cont = "\"".join("\", \"", @add_cont)."\"";
 		print Rcmd "
-			cont <- c(${all_cont})
-			for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
-			for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
-		";
+cont <- c(${all_cont})
+for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
+for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
+";
 	} else {
 		print Rcmd "
-			cont <- NULL
-		";
+cont <- NULL
+";
 	}
 	if(defined $OPTIONS{m}) {
 		print Rcmd "
-			for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
-		";
+for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
+";
 	}
 	if(!defined $OPTIONS{m} && !@add_cont){
 		die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n");
 	}
 	print Rcmd "
-		fit <- glmFit(disp, design)
-		cont <- makeContrasts(contrasts=cont, levels=design)
-		for(i in colnames(cont)) tested[[i]] <- glmLRT(disp, fit, contrast=cont[,i])
-	";
+fit <- glmFit(disp, design)
+cont <- makeContrasts(contrasts=cont, levels=design)
+for(i in colnames(cont)) tested[[i]] <- glmLRT(fit, contrast=cont[,i])
+pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\")
+for(i in colnames(cont)) {
+	dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\")
+	if(sum(dt) > 0) {
+		de_tags <- rownames(disp)[which(dt != 0)]
+		ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\"
+	} else {
+		de_tags <- rownames(topTags(tested[[i]], n=100)\$table)
+		ttl <- \"Top 100 tags\"
+	}
+
+	if(length(dt) < 5000) {
+		pointcex = 0.5
+	} else {
+		pointcex = 0.2
+	}
+	plotSmear(disp, de.tags = de_tags, main = paste(\"Smear Plot\", i), cex=pointcex)
+	abline(h = c(-1, 1), col = \"blue\")
+	legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\")
+}
+dev.off()
+";
 	if(defined $OPTIONS{n}) {
 		print Rcmd "
-			tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F)
-			write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
-		";
-	}			
+tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F)
+write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
+";
+	}
 } elsif($OPTIONS{a} eq "limma") {
 	for(my $fct = 0; $fct <= $#fact_names; $fct++) {
 		print Rcmd "
-			$fact_names[$fct] <- c($fact[$fct])
-		";
+$fact_names[$fct] <- c($fact[$fct])
+";
 	}
 	for(my $fct = 0; $fct <= $#cp_names; $fct++) {
 		print Rcmd "
-			$cp_names[$fct] <- c($cp[$fct])
-		";
+$cp_names[$fct] <- c($cp[$fct])
+";
 	}
 	my $all_fact = "";
 	if(@fact_names) {
@@ -241,102 +265,102 @@
 		$all_cp = " + ".join(" + ", @cp_names);
 	}
 	print Rcmd "
-		group_fact <- factor(names(groups))
-		design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
-		colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
-	";
+group_fact <- factor(names(groups))
+design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
+colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
+";
 	foreach my $fct (@fact_names) {
 		print Rcmd "
-			colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
-		";
+colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
+";
 	}
 	print Rcmd "
-		isexpr <- rowSums(cpm(toc)>1) >= 2
-		toc <- toc[isexpr, ]
-		pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\")
-		y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors)
-		dev.off()
+isexpr <- rowSums(cpm(toc)>1) >= 2
+toc <- toc[isexpr, ]
+pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\")
+y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors)
+dev.off()
 
-		pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\")
-		plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\")
-		dev.off()
-		fit <- lmFit(y, design)
-	";
+pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\")
+plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\")
+dev.off()
+fit <- lmFit(y, design)
+";
 	if(defined $OPTIONS{n}) {
 		if(defined $OPTIONS{l}) {
 			print Rcmd "
-				tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F)
-			";
+tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F)
+";
 		} else {
 			print Rcmd "
-				tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F)
-			";
+tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F)
+";
 		}
 		print Rcmd "
-			write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
-		";
-	}		
+write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
+";
+	}
 	if(@add_cont) {
 		$all_cont = "\"".join("\", \"", @add_cont)."\"";
 		print Rcmd "
-			cont <- c(${all_cont})
-			for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
-			for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
-		";
+cont <- c(${all_cont})
+for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
+for(i in uniq_groups)  cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
+";
 	} else {
 		print Rcmd "
-			cont <- NULL
-		";
+cont <- NULL
+";
 	}
 	if(defined $OPTIONS{m}) {
 		print Rcmd "
-			for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
-		";
+for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
+";
 	}
 	if(!defined $OPTIONS{m} && !@add_cont){
 		die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n");
 	}
 	print Rcmd "
-		cont <- makeContrasts(contrasts=cont, levels=design)
-		fit2 <- contrasts.fit(fit, cont)
-		fit2 <- eBayes(fit2)
-	";
+cont <- makeContrasts(contrasts=cont, levels=design)
+fit2 <- contrasts.fit(fit, cont)
+fit2 <- eBayes(fit2)
+";
 } else {
 	die("Anaysis type $OPTIONS{a} not found\n");
-	
+
 }
 
 if($OPTIONS{a} ne "limma") {
 	print Rcmd "
-		options(digits = 6)
-		tab <- NULL
-		for(i in names(tested)) {
-			tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]]
-			colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\")
-			tab_tmp <- tab_tmp[tagnames,]
-			if(is.null(tab)) {
-				tab <- tab_tmp
-			} else tab <- cbind(tab, tab_tmp)
-		}
-		tab <- cbind(Feature=rownames(tab), tab)
-	";
+options(digits = 6)
+tab <- NULL
+for(i in names(tested)) {
+	tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]]
+	colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\")
+	tab_tmp <- tab_tmp[tagnames,]
+	if(is.null(tab)) {
+		tab <- tab_tmp
+	} else tab <- cbind(tab, tab_tmp)
+}
+tab <- cbind(Feature=rownames(tab), tab)
+";
 } else {
 	print Rcmd "
-		tab <- NULL
-		options(digits = 6)
-		for(i in colnames(fit2)) {
-			tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\")
-			colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\")
-			if(is.null(tab)) {
-				tab <- tab_tmp
-			} else tab <- cbind(tab, tab_tmp[,-1])
-		}
-	";
+tab <- NULL
+options(digits = 6)
+for(i in colnames(fit2)) {
+	tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\")
+	colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\")
+	if(is.null(tab)) {
+		tab <- tab_tmp
+	} else tab <- cbind(tab, tab_tmp[,-1])
+}
+";
 }
 print Rcmd "
-	write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F)
-	sink(type=\"message\")
-	sink()
+write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F)
+sink(type=\"message\")
+sink()
 ";
 close(Rcmd);
 system("R --no-restore --no-save --no-readline < $OPTIONS{e}/r_script.R > $OPTIONS{e}/r_script.out");
@@ -352,6 +376,9 @@
 	print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
 } elsif($OPTIONS{a} eq "glm" && $OPTIONS{d} eq "tag") {
 	print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n";
+	print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
+} elsif($OPTIONS{a} eq "glm" && ($OPTIONS{d} eq "trend" || $OPTIONS{d} eq "common")) {
+	print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
 } elsif($OPTIONS{a} eq "limma") {
 	print HTML "<li><a href=LIMMA_MDS_plot.pdf>LIMMA_MDS_plot.pdf</a></li>\n";
 	print HTML "<li><a href=LIMMA_voom.pdf>LIMMA_voom.pdf</a></li>\n";