Mercurial > repos > fcaramia > jointsnvmix
view joint_snv_mix.xml @ 2:26953f1c8af2 draft default tip
Uploaded
author | fcaramia |
---|---|
date | Thu, 20 Jun 2013 00:53:38 -0400 |
parents | a1034918ab9b |
children |
line wrap: on
line source
<tool id="joint_snv_mix" name="Joint SNV Mix" version="0.7.5"> <description>classify germline and somatic mutations</description> <requirements> <requirement type="package" version="0.19.1">cython</requirement> <requirement type="package" version="0.5">pysam</requirement> <requirement type="package" version="0.1.18">samtools</requirement> <requirement type="package" version="0.7.5">jointsnvmix</requirement> </requirements> <command interpreter="perl"> joint_snv_mix.pl "ACTION::${option.option}" "REFGENOME::$refFile.fields.path" "BAMNORMAL::$normal_file" "BAMTUMOR::$tumor_file" #if str($option.option) == "classify": #if ($option.parameters): "OPTION::--parameters_file $option.parameters" #end if "OPTION::--out_file $output" "OPTION::--somatic_threshold $option.somatic_threshold" #end if #if str($option.option) == "train": #if ($option.priors): "OPTION::--priors_file $option.priors" #end if "OUTPUT::$output" "OPTION::--convergence_threshold $option.convergence_threshold" "OPTION::--max_iters $option.max_iters" #end if #if ($positions_file): "OPTION::--positions_file $positions_file" #end if "OPTION::--min_base_qual $min_base_quality" "OPTION::--min_map_qual $min_map_quality" "OPTION::--model $model" #if ($chromosome): "OPTION::--chromosome $chromosome" #end if </command> <inputs> <param name="refFile" type="select" label="Select a reference genome" optional="false"> <options from_data_table="all_fasta"> <filter type="sort_by" column="2" /> <validator type="no_options" message="No indexes are available" /> </options> </param> <param name="normal_file" type="data" format="bam" label="Normal Sample " help="Bam" /> <param name="tumor_file" type="data" format="bam" label="Tumor Sample" help="Bam" /> <param name="model" type="select" label="Model" help="" optional="true"> <option value="binomial">binomial</option> <option value="snvmix2" selected="true">snvmix2</option> <option value="beta_binomial">beta binomial</option> </param> <param name="positions_file" type="data" format="txt" label="Positions file" help="Filter positions" optional="true"/> <param name="min_map_quality" type="text" label="Min map quality" help="Filter reads" value="0"/> <param name="min_base_quality" type="text" label="Min base quality" help="Filter reads" value="0"/> <param name="chromosome" type="text" label="Chromosome" help="a chromosome to analyse, leave blank for all"/> <conditional name="option"> <param name="option" type="select" label="Action" help="" optional="true"> <option value="train" selected="true">Train</option> <option value="classify">Classify</option> </param> <when value="train"> <param name="priors" type="data" format="txt" label="Prior Probabilities" optional="true"/> <param name="initial_parameters" type="data" format="txt" label="Initial Parameters" optional="true"/> <param name="convergence_threshold" type="text" label="Convergence Threshold" value="1e-6"/> <param name="max_iters" type="text" label="Max number of training iterations" value="1000"/> </when> <when value="classify"> <param name="parameters" type="data" format="txt" label="Classify Parameters" help="" optional="true" /> <param name="somatic_threshold" type="text" label="Somatic Threshold" help="filter by probability" value="0.0"/> </when> </conditional> </inputs> <outputs> <data type="data" format="txt" name="output" label="${tool.name} result on ${on_string}"/> </outputs> <help> .. class:: infomark **What it does** :: JointSNVMix implements a probabilistic graphical model to analyse sequence data from tumour/normal pairs. The model draws statistical strength by analysing both genome jointly to more accurately classify germline and somatic mutations. Train The SnvMix family of models are complete generative models of the data. As such the model parameters can be learned using the Expectation Maximisation (EM) algorithm. The train command allows this to be done. All methods require that a file with the parameters for the prior densities, and an initial set of parameters be passed in. Templates for these files can be found in the config/ directory which ships with the package. If you are unsure about setting the priors or parameter values these files should suffice. The train command will produce a parameters file suitable for use with the classification command. Training is highly recommended to achieve optimal performance when using SnvMix based model. To reduce memory consumption all subcommands of train take an optional --skip-size flag. This is the number of positions to skip over before sampling a position for the training set. Smaller values will lead to larger training sets which will require more memory, but should yield better parameter estimates. All subcommands of train also take optional parameters for minimum depth a position has in the tumour and normal to be used for training. Higher depth sites should give more robust estimates of the parameters. The default values of these are likely fine. Classify The classify command is used for analysing tumour/normal paired data and computing the posterior probability for each of the nine joint genotypes for a pair of diploid genomes. **Models** :: There are currently three models supported by both the train and classify commands. All models use the JointSNVMix mixture model which jointly analyses the normal and tumour genomes. By default snvmix2 is used but other models can be specified. binomial Uses binomial densities in the mixture model this was previously referred to as the JointSnvMix1 mode. snvmix2 Uses snvmix2 densities in the mixture as described in the original SNVMix paper previously referred to as JointSnvMix2. beta_binomial Uses beta-binomial densities in the mixture model new in version 0.8. The beta-binomial is a robust (in the statistical sense) alternative to binomial model. It can be beneficial when dealing with over-dispersed data. This is useful in cancer genomes since allelic frequencies at somatic mutations sites may deviate significantly from those expected under diploid model. **Input** Bam files containing normal and tumor reads. **Parameters** Classify chromosome CHROMOSOME Chromosome to analyse. If not set all chromosomes will be analysed. min_base_qual MIN_BASE_QUAL Remove bases with base quality lower than this. Default is 0. min_map_qual MIN_MAP_QUAL Remove bases with mapping quality lower than this. Default is 0. positions_file POSITIONS_FILE Path to a file containing a list of positions to create use for analysis. Should be space separated chrom pos. Additionally for each chromosome the positions should be sorted. The same format as samtools. parameters_file PARAMETERS_FILE Path to a file with custom parameters values for the model. somatic_threshold SOMATIC_THRESHOLD Only sites with P(Somatic) = p_AA_AB + p_AA_BB greater than equal this value will be printed. Default is 0. Train chromosome CHROMOSOME Chromosome to analyse. If not set all chromosomes will be analysed. min_base_qual MIN_BASE_QUAL Remove bases with base quality lower than this. Default is 0. min_map_qual MIN_MAP_QUAL Remove bases with mapping quality lower than this. Default is 0. positions_file POSITIONS_FILE Path to a file containing a list of positions to create use for analysis. Should be space separated chrom pos. Additionally for each chromosome the positions should be sorted. The same format as samtools. priors_file PRIORS_FILE Path to a file with priors for the model parameters. initial_parameters_file INITIAL_PARAMETERS_FILE Path to a file with initial parameter values for the model. min_normal_depth MIN_NORMAL_DEPTH Minimum depth of coverage in normal sample for a site to be eligible for use in training set. Default 10 min_tumour_depth MIN_TUMOUR_DEPTH Minimum depth of coverage in tumour sample for a site to be eligible for use in training set. Default 10 max_normal_depth MAX_NORMAL_DEPTH Maximum depth of coverage in normal sample for a site to be eligible for use in training set. Default 100 max_tumour_depth MAX_TUMOUR_DEPTH Maximum depth of coverage in tumour sample for a site to be eligible for use in training set. Default 100 max_iters MAX_ITERS Maximum number of iterations to used for training model. Default 1000 skip_size SKIP_SIZE When subsampling will skip over this number of position before adding a site to the subsample. Larger values lead to smaller subsample data sets with faster training and less memory. Smaller values should lead to better parameter estimates. Default 1. convergence_threshold CONVERGENCE_THRESHOLD Convergence threshold for EM training. Once the change in objective function is below this value training will end. Default 1e-6 </help> </tool>