NAMES | RETENTION INFOS | DISTANCE SCORES | IDs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N° Spectres | Spectrum | Analyte | Retention Index | RI Discrepancy | Dot product | Euclidean | Jaccard | Hamming | s12 Gower-Legendre | Spectrum id | Metabolite id | Analyte id |
N° Spectre | Spectrum | Analyte | Retention Index | RI Discrepancy | Dot product | Euclidean | Jaccard | Hamming | s12 Gower-Legendre | Spectrum id | Metabolite id | Analyte id |
1 | Glucose (1MEOX) (5TMS) BP [A191001-ambient-na-12] | Glucose (1MEOX) (5TMS) BP | 1899.05493 | 1.054953 | 0.486183 | 0.087158 | 0.851562 | 109 | 0.784043 | 833ab58c-a8fa-4389-8b42-95e618cafb91 | 68513255-fc44-4041-bc4b-4fd2fae7541d | 0a2b3536-2245-4c0e-bdbc-495766eeec67 |
1 | Galactose (1MEOX) (5TMS) BP [A191002-ambient-DL--6] | Galactose (1MEOX) (5TMS) BP | 1902.42212 | 4.422119 | 0.487546 | 0.086942 | 0.852713 | 110 | 0.784997 | 6e056b61-4da9-46e3-970b-680a22e4afd0 | dd3ea070-54a6-4ea7-b99b-a6e975fdd204 | 1c3ad0aa-ee78-4542-93b3-aa9fdf07add1 |
1 | Idose (1MEOX) (5TMS) BP [A191005-ambient-na-1] | Idose (1MEOX) (5TMS) BP | 1897.25439 | 0.745605469 | 0.490155 | 0.086178 | 0.856061 | 113 | 0.787786 | d00de57d-6fab-49d0-9aee-25e259da9180 | ab025068-f464-4bc6-9c92-994c29387db2 | 6f4e926f-d7ef-47b6-a52c-91ff88ca567a |
1 | Allantoin (5TMS) [A188009-ambient-na-5] | Allantoin (5TMS) | 1896.99829 | 1.001709 | 0.491457 | 0.094101 | 0.855856 | 95 | 0.804233 | 817f2a03-9df5-46e3-973c-b2a9675109cf | a999f0d6-0285-41d9-a6ba-b705987b663c | 65bb54d2-6bf7-4a53-aa22-8abf71240005 |
1 | Glucose, U-13C- (1MEOX) (5TMS) BP [A191001-13C-na-2] | Glucose, U-13C- (1MEOX) (5TMS) BP | 1901.63 | 3.63 | 0.497227 | 0.091034 | 0.850000 | 102 | 0.788322 | 27d4dcdd-d351-4976-8ef9-76a0cc53f631 | 441faccb-2631-4e7d-b6ca-99437265ccb8 | 96441b61-2891-4e81-93dc-d0fc0ad175d4 |
2 | no results | |||||||||||
3 | Glucose (1MEOX) (5TMS) BP [A191001-ambient-na-12] | Glucose (1MEOX) (5TMS) BP | 1899.05493 | 1.054953 | 0.487052 | 0.086898 | 0.860465 | 111 | 0.796870 | 833ab58c-a8fa-4389-8b42-95e618cafb91 | 68513255-fc44-4041-bc4b-4fd2fae7541d | 0a2b3536-2245-4c0e-bdbc-495766eeec67 |
3 | Galactose (1MEOX) (5TMS) BP [A191002-ambient-DL--6] | Galactose (1MEOX) (5TMS) BP | 1902.42212 | 4.422119 | 0.488362 | 0.086679 | 0.861538 | 112 | 0.797759 | 6e056b61-4da9-46e3-970b-680a22e4afd0 | dd3ea070-54a6-4ea7-b99b-a6e975fdd204 | 1c3ad0aa-ee78-4542-93b3-aa9fdf07add1 |
3 | Idose (1MEOX) (5TMS) BP [A191005-ambient-na-1] | Idose (1MEOX) (5TMS) BP | 1897.25439 | 0.745605469 | 0.491138 | 0.085939 | 0.864662 | 115 | 0.800359 | d00de57d-6fab-49d0-9aee-25e259da9180 | ab025068-f464-4bc6-9c92-994c29387db2 | 6f4e926f-d7ef-47b6-a52c-91ff88ca567a |
3 | Allantoin (5TMS) [A188009-ambient-na-5] | Allantoin (5TMS) | 1896.99829 | 1.001709 | 0.491888 | 0.093722 | 0.866071 | 97 | 0.817843 | 817f2a03-9df5-46e3-973c-b2a9675109cf | a999f0d6-0285-41d9-a6ba-b705987b663c | 65bb54d2-6bf7-4a53-aa22-8abf71240005 |
3 | Glucose, U-13C- (1MEOX) (5TMS) BP [A191001-13C-na-2] | Glucose, U-13C- (1MEOX) (5TMS) BP | 1901.63 | 3.63 | 0.498281 | 0.090753 | 0.859504 | 104 | 0.801549 | 27d4dcdd-d351-4976-8ef9-76a0cc53f631 | 441faccb-2631-4e7d-b6ca-99437265ccb8 | 96441b61-2891-4e81-93dc-d0fc0ad175d4 |
4 | no results |
print
copy
export

What can the table do ?
Distances scores
S12Gower-Legendre Distance | The distance measure S12GowLeg = sqrt(1 - s12) is derived from the S12 coefficient of Gower & Legendre defined as s12 = a / sqrt((a + b)(a + c)), with "a" representing the number of positions at which both spectra are in "on-state" and "b" respectively "c" representing the number of positions at which only the query spectrum or the hit spectrum are in "on-state". |
Hamming Distance | In information theory, the Hamming distance between two strings of equal length is the number of positions for which the corresponding symbols are different. Put another way, it measures the minimum number of substitutions required to change one into the other, or the number of errors that transformed one string into the other. |
Jaccard Distance | Number of matches (a mass with appropriate intensity in both spectra) divided by the sum of matches and mismatches (a mass where only one of both spectra has a intensity). The jaccard distance is a binary distance. |
Dotproduct Distance | The Dotproduct distance is summing the multiplied intensities over all matching peaks within both spectra. Here, to satisfy the conditions of a metric I) non-negativity, II) identity of indiscernibles, III) symmetry and IV) subadditivity / triangle inequality, we use 1-Dotproduct. Both spectra are normalised prior to the spectral vector norm in that way, that the absolute value of the squared intensities is equal to 1. |
Euclidean Distance | The Euclid is the square root of the sum of the squared differences over all matching peaks. |