29
|
1 <?xml version="1.0" ?>
|
|
2 <tool id="qiime_sample-classifier_classify-samples-ncv" name="qiime sample-classifier classify-samples-ncv"
|
|
3 version="2020.8">
|
|
4 <description>Nested cross-validated supervised learning classifier.</description>
|
|
5 <requirements>
|
|
6 <requirement type="package" version="2020.8">qiime2</requirement>
|
|
7 </requirements>
|
|
8 <command><![CDATA[
|
|
9 qiime sample-classifier classify-samples-ncv
|
|
10
|
|
11 --i-table=$itable
|
|
12 # if $input_files_mmetadatafile:
|
|
13 # def list_dict_to_string(list_dict):
|
|
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
|
|
15 # for d in list_dict[1:]:
|
|
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name')
|
|
17 # end for
|
|
18 # return $file_list
|
|
19 # end def
|
|
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile)
|
|
21 # end if
|
|
22
|
|
23 #if '__ob__' in str($mmetadatacolumn):
|
|
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[')
|
|
25 #set $mmetadatacolumn = $mmetadatacolumn_temp
|
|
26 #end if
|
|
27 #if '__cb__' in str($mmetadatacolumn):
|
|
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']')
|
|
29 #set $mmetadatacolumn = $mmetadatacolumn_temp
|
|
30 #end if
|
|
31 #if 'X' in str($mmetadatacolumn):
|
|
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\')
|
|
33 #set $mmetadatacolumn = $mmetadatacolumn_temp
|
|
34 #end if
|
|
35 #if '__sq__' in str($mmetadatacolumn):
|
|
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'")
|
|
37 #set $mmetadatacolumn = $mmetadatacolumn_temp
|
|
38 #end if
|
|
39 #if '__db__' in str($mmetadatacolumn):
|
|
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"')
|
|
41 #set $mmetadatacolumn = $mmetadatacolumn_temp
|
|
42 #end if
|
|
43
|
|
44 --m-metadata-column=$mmetadatacolumn
|
|
45
|
|
46
|
|
47 --p-cv=$pcv
|
|
48
|
|
49 #if str($prandomstate):
|
|
50 --p-random-state=$prandomstate
|
|
51 #end if
|
|
52 --p-n-jobs=$pnjobs
|
|
53
|
|
54 --p-n-estimators=$pnestimators
|
|
55
|
|
56 #if str($pestimator) != 'None':
|
|
57 --p-estimator=$pestimator
|
|
58 #end if
|
|
59
|
|
60 #if $pparametertuning:
|
|
61 --p-parameter-tuning
|
|
62 #end if
|
|
63
|
|
64 #if str($pmissingsamples) != 'None':
|
|
65 --p-missing-samples=$pmissingsamples
|
|
66 #end if
|
|
67
|
|
68 --o-predictions=opredictions
|
|
69
|
|
70 --o-feature-importance=ofeatureimportance
|
|
71
|
|
72 --o-probabilities=oprobabilities
|
|
73
|
|
74 #if str($examples) != 'None':
|
|
75 --examples=$examples
|
|
76 #end if
|
|
77
|
|
78 ;
|
|
79 cp oprobabilities.qza $oprobabilities
|
|
80
|
|
81 ]]></command>
|
|
82 <inputs>
|
|
83 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" />
|
|
84 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file">
|
|
85 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" />
|
|
86 </repeat>
|
|
87 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" />
|
|
88 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" />
|
|
89 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" />
|
|
90 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" />
|
|
91 <param label="--p-estimator: " name="pestimator" optional="True" type="select">
|
|
92 <option selected="True" value="None">Selection is Optional</option>
|
|
93 <option value="RandomForestClassifier">RandomForestClassifier</option>
|
|
94 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option>
|
|
95 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option>
|
|
96 <option value="AdaBoostClassifier">AdaBoostClassifier</option>
|
|
97 <option value="KNeighborsClassifier">KNeighborsClassifier</option>
|
|
98 <option value="LinearSVC">LinearSVC</option>
|
|
99 <option value="SVC">SVC</option>
|
|
100 </param>
|
|
101 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" />
|
|
102 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select">
|
|
103 <option selected="True" value="None">Selection is Optional</option>
|
|
104 <option value="error">error</option>
|
|
105 <option value="ignore">ignore</option>
|
|
106 </param>
|
|
107 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" />
|
|
108
|
|
109 </inputs>
|
|
110
|
|
111 <outputs>
|
|
112 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" />
|
|
113 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" />
|
|
114 <data format="qza" label="${tool.name} on ${on_string}: probabilities.qza" name="oprobabilities" />
|
|
115
|
|
116 </outputs>
|
|
117
|
|
118 <help><![CDATA[
|
|
119 Nested cross-validated supervised learning classifier.
|
|
120 ###############################################################
|
|
121
|
|
122 Predicts a categorical sample metadata column using a supervised learning
|
|
123 classifier. Uses nested stratified k-fold cross validation for automated
|
|
124 hyperparameter optimization and sample prediction. Outputs predicted values
|
|
125 for each input sample, and relative importance of each feature for model
|
|
126 accuracy.
|
|
127
|
|
128 Parameters
|
|
129 ----------
|
|
130 table : FeatureTable[Frequency]
|
|
131 Feature table containing all features that should be used for target
|
|
132 prediction.
|
|
133 metadata : MetadataColumn[Categorical]
|
|
134 Categorical metadata column to use as prediction target.
|
|
135 cv : Int % Range(1, None), optional
|
|
136 Number of k-fold cross-validations to perform.
|
|
137 random_state : Int, optional
|
|
138 Seed used by random number generator.
|
|
139 n_jobs : Int, optional
|
|
140 Number of jobs to run in parallel.
|
|
141 n_estimators : Int % Range(1, None), optional
|
|
142 Number of trees to grow for estimation. More trees will improve
|
|
143 predictive accuracy up to a threshold level, but will also increase
|
|
144 time and memory requirements. This parameter only affects ensemble
|
|
145 estimators, such as Random Forest, AdaBoost, ExtraTrees, and
|
|
146 GradientBoosting.
|
|
147 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional
|
|
148 Estimator method to use for sample prediction.
|
|
149 parameter_tuning : Bool, optional
|
|
150 Automatically tune hyperparameters using random grid search.
|
|
151 missing_samples : Str % Choices('error', 'ignore'), optional
|
|
152 How to handle missing samples in metadata. "error" will fail if missing
|
|
153 samples are detected. "ignore" will cause the feature table and
|
|
154 metadata to be filtered, so that only samples found in both files are
|
|
155 retained.
|
|
156
|
|
157 Returns
|
|
158 -------
|
|
159 predictions : SampleData[ClassifierPredictions]
|
|
160 Predicted target values for each input sample.
|
|
161 feature_importance : FeatureData[Importance]
|
|
162 Importance of each input feature to model accuracy.
|
|
163 probabilities : SampleData[Probabilities]
|
|
164 Predicted class probabilities for each input sample.
|
|
165 ]]></help>
|
|
166 <macros>
|
|
167 <import>qiime_citation.xml</import>
|
|
168 </macros>
|
|
169 <expand macro="qiime_citation"/>
|
|
170 </tool> |