0
|
1 <?xml version="1.0" ?>
|
|
2 <tool id="qiime_sample-classifier_metatable" name="qiime sample-classifier metatable" version="2019.4">
|
|
3 <description> - Convert (and merge) positive numeric metadata (in)to feature table.</description>
|
|
4 <requirements>
|
|
5 <requirement type="package" version="2019.4">qiime2</requirement>
|
|
6 </requirements>
|
|
7 <command><![CDATA[
|
|
8 qiime sample-classifier metatable
|
|
9
|
|
10
|
|
11 #if str($itable) != 'None':
|
|
12 --i-table=$itable
|
|
13 #end if
|
|
14
|
|
15 #if str($pmissingsamples) != 'None':
|
|
16 --p-missing-samples=$pmissingsamples
|
|
17 #end if
|
|
18
|
|
19 #if str($pmissingvalues) != 'None':
|
|
20 --p-missing-values=$pmissingvalues
|
|
21 #end if
|
|
22
|
|
23
|
|
24 #if $input_files_mmetadatafile:
|
|
25 #def list_dict_to_string(list_dict):
|
|
26 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
|
|
27 #for d in list_dict[1:]:
|
|
28 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name')
|
|
29 #end for
|
|
30 #return $file_list
|
|
31 #end def
|
|
32 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile)
|
|
33 #end if
|
|
34
|
|
35
|
|
36 --o-converted-table=oconvertedtable
|
|
37 ;
|
|
38 cp oconvertedtable.qza $oconvertedtable
|
|
39 ]]></command>
|
|
40 <inputs>
|
|
41 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [optional]" name="itable" optional="True" type="data"/>
|
|
42 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select">
|
|
43 <option selected="True" value="None">Selection is Optional</option>
|
|
44 <option value="error">error</option>
|
|
45 <option value="ignore">ignore</option>
|
|
46 </param>
|
|
47 <param label="--p-missing-values: " name="pmissingvalues" optional="True" type="select">
|
|
48 <option selected="True" value="None">Selection is Optional</option>
|
|
49 <option value="drop_samples">drop_samples</option>
|
|
50 <option value="drop_features">drop_features</option>
|
|
51 <option value="error">error</option>
|
|
52 <option value="fill">fill</option>
|
|
53 </param>
|
|
54
|
|
55 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file">
|
|
56 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" />
|
|
57 </repeat>
|
|
58
|
|
59 </inputs>
|
|
60 <outputs>
|
|
61 <data format="qza" label="${tool.name} on ${on_string}: convertedtable.qza" name="oconvertedtable"/>
|
|
62 </outputs>
|
|
63 <help><![CDATA[
|
|
64 Convert (and merge) positive numeric metadata (in)to feature table.
|
|
65 ###################################################################
|
|
66
|
|
67 Convert numeric sample metadata from TSV file into a feature table.
|
|
68 Optionally merge with an existing feature table. Only numeric metadata will
|
|
69 be converted; categorical columns will be silently dropped. By default, if
|
|
70 a table is used as input only samples found in both the table and metadata
|
|
71 (intersection) are merged, and others are silently dropped. Set
|
|
72 missing_samples="error" to raise an error if samples found in the table are
|
|
73 missing from the metadata file. The metadata file can always contain a
|
|
74 superset of samples. Note that columns will be dropped if they are non-
|
|
75 numeric, contain only unique values, contain no unique values (zero
|
|
76 variance), contain only empty cells, or contain negative values. This
|
|
77 method currently only converts postive numeric metadata into feature data.
|
|
78 Tip: convert categorical columns to dummy variables to include them in the
|
|
79 output feature table.
|
|
80
|
|
81 Parameters
|
|
82 ----------
|
|
83 metadata : Metadata
|
|
84 Metadata file to convert to feature table.
|
|
85 table : FeatureTable[Frequency], optional
|
|
86 Feature table containing all features that should be used for target
|
|
87 prediction.
|
|
88 missing_samples : Str % Choices('error', 'ignore'), optional
|
|
89 How to handle missing samples in metadata. "error" will fail if missing
|
|
90 samples are detected. "ignore" will cause the feature table and
|
|
91 metadata to be filtered, so that only samples found in both files are
|
|
92 retained.
|
|
93 missing_values : Str % Choices('drop_samples', 'drop_features', 'error', 'fill'), optional
|
|
94 How to handle missing values (nans) in metadata. Either "drop_samples"
|
|
95 with missing values, "drop_features" with missing values, "fill"
|
|
96 missing values with zeros, or "error" if any missing values are found.
|
|
97
|
|
98 Returns
|
|
99 -------
|
|
100 converted_table : FeatureTable[Frequency]
|
|
101 Converted feature table
|
|
102 ]]></help>
|
|
103 <macros>
|
|
104 <import>qiime_citation.xml</import>
|
|
105 </macros>
|
|
106 <expand macro="qiime_citation"/>
|
|
107 </tool>
|