comparison qiime2/qiime_longitudinal_feature-volatility.xml @ 0:370e0b6e9826 draft

Uploaded
author florianbegusch
date Wed, 17 Jul 2019 03:05:17 -0400
parents
children 914fa4daf16a
comparison
equal deleted inserted replaced
-1:000000000000 0:370e0b6e9826
1 <?xml version="1.0" ?>
2 <tool id="qiime_longitudinal_feature-volatility" name="qiime longitudinal feature-volatility" version="2019.4">
3 <description> - Feature volatility analysis</description>
4 <requirements>
5 <requirement type="package" version="2019.4">qiime2</requirement>
6 </requirements>
7 <command><![CDATA[
8 qiime longitudinal feature-volatility
9
10 --i-table=$itable
11 --p-state-column="$pstatecolumn"
12
13 #if str($pindividualidcolumn):
14 --p-individual-id-column="$pindividualidcolumn"
15 #end if
16
17 #if $pcv:
18 --p-cv=$pcv
19 #end if
20
21 #if str($prandomstate):
22 --p-random-state="$prandomstate"
23 #end if
24
25 #set $pnjobs = '${GALAXY_SLOTS:-4}'
26
27 #if str($pnjobs):
28 --p-n-jobs="$pnjobs"
29 #end if
30
31
32 #if $pnestimators:
33 --p-n-estimators=$pnestimators
34 #end if
35
36 #if str($pestimator) != 'None':
37 --p-estimator=$pestimator
38 #end if
39
40 #if $pparametertuning:
41 --p-parameter-tuning
42 #end if
43
44 #if str($pmissingsamples) != 'None':
45 --p-missing-samples=$pmissingsamples
46 #end if
47
48
49 #if $input_files_mmetadatafile:
50 #def list_dict_to_string(list_dict):
51 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
52 #for d in list_dict[1:]:
53 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name')
54 #end for
55 #return $file_list
56 #end def
57 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile)
58 #end if
59
60
61 --o-filtered-table=ofilteredtable
62 --o-feature-importance=ofeatureimportance
63 --o-volatility-plot=ovolatilityplot
64 --o-accuracy-results=oaccuracyresults
65 --o-sample-estimator=osampleestimator
66 ;
67 cp ofilteredtable.qza $ofilteredtable;
68 cp ofeatureimportance.qza $ofeatureimportance;
69 qiime tools export --input-path ovolatilityplot.qzv --output-path out && mkdir -p '$ovolatilityplot.files_path'
70 && cp -r out/* '$ovolatilityplot.files_path'
71 && mv '$ovolatilityplot.files_path/index.html' '$ovolatilityplot';
72 qiime tools export --input-path oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path'
73 && cp -r out/* '$oaccuracyresults.files_path'
74 && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults';
75 cp osampleestimator.qza $osampleestimator
76 ]]></command>
77 <inputs>
78 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/>
79 <param label="--p-state-column: TEXT Metadata containing collection time (state) values for each sample. Must contain exclusively numeric values. [required]" name="pstatecolumn" optional="False" type="text"/>
80 <param label="--p-individual-id-column: TEXT Metadata column containing IDs for individual subjects. [optional]" name="pindividualidcolumn" optional="True" type="text"/>
81 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" min="1" value="5"/>
82 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/>
83 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" min="1" value="100"/>
84 <param label="--p-estimator: " name="pestimator" optional="True" type="select">
85 <option selected="True" value="None">Selection is Optional</option>
86 <option value="RandomForestRegressor">RandomForestRegressor</option>
87 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option>
88 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option>
89 <option value="AdaBoostRegressor">AdaBoostRegressor</option>
90 <option value="ElasticNet">ElasticNet</option>
91 <option value="Ridge">Ridge</option>
92 <option value="Lasso">Lasso</option>
93 <option value="KNeighborsRegressor">KNeighborsRegressor</option>
94 <option value="LinearSVR">LinearSVR</option>
95 <option value="SVR">SVR</option>
96 </param>
97 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/>
98 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select">
99 <option selected="True" value="None">Selection is Optional</option>
100 <option value="error">error</option>
101 <option value="ignore">ignore</option>
102 </param>
103
104 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file">
105 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" />
106 </repeat>
107
108 </inputs>
109 <outputs>
110 <data format="qza" label="${tool.name} on ${on_string}: filteredtable.qza" name="ofilteredtable"/>
111 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/>
112 <data format="html" label="${tool.name} on ${on_string}: volatilityplot.qzv" name="ovolatilityplot"/>
113 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.qzv" name="oaccuracyresults"/>
114 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/>
115 </outputs>
116 <help><![CDATA[
117 Feature volatility analysis
118 ###########################
119
120 Identify features that are predictive of a numeric metadata column,
121 state_column (e.g., time), and plot their relative frequencies across
122 states using interactive feature volatility plots. A supervised learning
123 regressor is used to identify important features and assess their ability
124 to predict sample states. state_column will typically be a measure of time,
125 but any numeric metadata column can be used.
126
127 Parameters
128 ----------
129 table : FeatureTable[Frequency]
130 Feature table containing all features that should be used for target
131 prediction.
132 metadata : Metadata
133 Sample metadata file containing individual_id_column.
134 state_column : Str
135 Metadata containing collection time (state) values for each sample.
136 Must contain exclusively numeric values.
137 individual_id_column : Str, optional
138 Metadata column containing IDs for individual subjects.
139 cv : Int % Range(1, None), optional
140 Number of k-fold cross-validations to perform.
141 random_state : Int, optional
142 Seed used by random number generator.
143 n_estimators : Int % Range(1, None), optional
144 Number of trees to grow for estimation. More trees will improve
145 predictive accuracy up to a threshold level, but will also increase
146 time and memory requirements. This parameter only affects ensemble
147 estimators, such as Random Forest, AdaBoost, ExtraTrees, and
148 GradientBoosting.
149 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional
150 Estimator method to use for sample prediction.
151 parameter_tuning : Bool, optional
152 Automatically tune hyperparameters using random grid search.
153 missing_samples : Str % Choices('error', 'ignore'), optional
154 How to handle missing samples in metadata. "error" will fail if missing
155 samples are detected. "ignore" will cause the feature table and
156 metadata to be filtered, so that only samples found in both files are
157 retained.
158
159 Returns
160 -------
161 filtered_table : FeatureTable[RelativeFrequency]
162 Feature table containing only important features.
163 feature_importance : FeatureData[Importance]
164 Importance of each input feature to model accuracy.
165 volatility_plot : Visualization
166 Interactive volatility plot visualization.
167 accuracy_results : Visualization
168 Accuracy results visualization.
169 sample_estimator : SampleEstimator[Regressor]
170 Trained sample regressor.
171 ]]></help>
172 <macros>
173 <import>qiime_citation.xml</import>
174 </macros>
175 <expand macro="qiime_citation"/>
176 </tool>