Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2/qiime_longitudinal_maturity-index.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | 914fa4daf16a |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:370e0b6e9826 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_longitudinal_maturity-index" name="qiime longitudinal maturity-index" version="2019.4"> | |
3 <description> - Microbial maturity index prediction.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2019.4">qiime2</requirement> | |
6 </requirements> | |
7 <command><![CDATA[ | |
8 qiime longitudinal maturity-index | |
9 | |
10 --i-table=$itable | |
11 --p-state-column="$pstatecolumn" | |
12 --p-group-by="$pgroupby" | |
13 --p-control="$pcontrol" | |
14 | |
15 #if str($pindividualidcolumn): | |
16 --p-individual-id-column="$pindividualidcolumn" | |
17 #end if | |
18 | |
19 #if str($pestimator) != 'None': | |
20 --p-estimator=$pestimator | |
21 #end if | |
22 | |
23 #if $pnestimators: | |
24 --p-n-estimators=$pnestimators | |
25 #end if | |
26 | |
27 #if $ptestsize: | |
28 --p-test-size=$ptestsize | |
29 #end if | |
30 | |
31 #if $pstep: | |
32 --p-step=$pstep | |
33 #end if | |
34 | |
35 #if $pcv: | |
36 --p-cv=$pcv | |
37 #end if | |
38 | |
39 #if str($prandomstate): | |
40 --p-random-state="$prandomstate" | |
41 #end if | |
42 | |
43 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
44 #if str($pnjobs): | |
45 --p-n-jobs="$pnjobs" | |
46 #end if | |
47 | |
48 | |
49 #if $pparametertuning: | |
50 --p-parameter-tuning | |
51 #end if | |
52 | |
53 #if $poptimizefeatureselection: | |
54 --p-optimize-feature-selection | |
55 #end if | |
56 | |
57 #if $pstratify: | |
58 --p-stratify | |
59 #end if | |
60 | |
61 #if str($pmissingsamples) != 'None': | |
62 --p-missing-samples=$pmissingsamples | |
63 #end if | |
64 | |
65 #if $pfeaturecount: | |
66 --p-feature-count=$pfeaturecount | |
67 #end if | |
68 | |
69 | |
70 #if $input_files_mmetadatafile: | |
71 #def list_dict_to_string(list_dict): | |
72 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
73 #for d in list_dict[1:]: | |
74 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
75 #end for | |
76 #return $file_list | |
77 #end def | |
78 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
79 #end if | |
80 | |
81 | |
82 --o-sample-estimator=osampleestimator | |
83 --o-feature-importance=ofeatureimportance | |
84 --o-predictions=opredictions | |
85 --o-model-summary=omodelsummary | |
86 --o-accuracy-results=oaccuracyresults | |
87 --o-maz-scores=omazscores | |
88 --o-clustermap=oclustermap | |
89 --o-volatility-plots=ovolatilityplots | |
90 ; | |
91 cp osampleestimator.qza $osampleestimator; | |
92 cp ofeatureimportance.qza $ofeatureimportance; | |
93 cp opredictions.qza $opredictions; | |
94 qiime tools export --input-path omodelsummary.qzv --output-path out && mkdir -p '$omodelsummary.files_path' | |
95 && cp -r out/* '$omodelsummary.files_path' | |
96 && mv '$omodelsummary.files_path/index.html' '$omodelsummary'; | |
97 qiime tools export --input-path oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path' | |
98 && cp -r out/* '$oaccuracyresults.files_path' | |
99 && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults'; | |
100 cp omazscores.qza $omazscores; | |
101 qiime tools export --input-path oclustermap.qzv --output-path out && mkdir -p '$oclustermap.files_path' | |
102 && cp -r out/* '$oclustermap.files_path' | |
103 && mv '$oclustermap.files_path/index.html' '$oclustermap'; | |
104 qiime tools export --input-path ovolatilityplots.qzv --output-path out && mkdir -p '$ovolatilityplots.files_path' | |
105 && cp -r out/* '$ovolatilityplots.files_path' | |
106 && mv '$ovolatilityplots.files_path/index.html' '$ovolatilityplots' | |
107 ]]></command> | |
108 <inputs> | |
109 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
110 <param label="--p-state-column: TEXT Numeric metadata column containing sampling time (state) data to use as prediction target. [required]" name="pstatecolumn" optional="False" type="text"/> | |
111 <param label="--p-group-by: TEXT Categorical metadata column to use for plotting and significance testing between main treatment groups. [required]" name="pgroupby" optional="False" type="text"/> | |
112 <param label="--p-control: TEXT Value of group-by to use as control group. The regression model will be trained using only control group data, and the maturity scores of other groups consequently will be assessed relative to this group. [required]" name="pcontrol" optional="False" type="text"/> | |
113 <param label="--p-individual-id-column: TEXT Optional metadata column containing IDs for individual subjects. Adds individual subject (spaghetti) vectors to volatility charts if a column name is provided. [optional]" name="pindividualidcolumn" optional="True" type="text"/> | |
114 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
115 <option selected="True" value="None">Selection is Optional</option> | |
116 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
117 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
118 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
119 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
120 <option value="ElasticNet">ElasticNet</option> | |
121 <option value="Ridge">Ridge</option> | |
122 <option value="Lasso">Lasso</option> | |
123 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
124 <option value="LinearSVR">LinearSVR</option> | |
125 <option value="SVR">SVR</option> | |
126 </param> | |
127 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" min="1" value="100"/> | |
128 <param label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.5]" name="ptestsize" optional="True" type="float" exclusive_start="True" min="0" max="1" value="0.5"/> | |
129 <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" exclusive_start="True" min="0" max="1" value="0.05"/> | |
130 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" min="1" value="5"/> | |
131 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> | |
132 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> | |
133 <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> | |
134 <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean"/> | |
135 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
136 <option selected="True" value="None">Selection is Optional</option> | |
137 <option value="error">error</option> | |
138 <option value="ignore">ignore</option> | |
139 </param> | |
140 <param label="--p-feature-count: INTEGER Range(0, None) Filter feature table to include top N most important features. Set to zero to include all features. [default: 50]" name="pfeaturecount" optional="True" type="integer" min="0" value="50"/> | |
141 | |
142 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
143 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | |
144 </repeat> </inputs> | |
145 | |
146 <outputs> | |
147 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> | |
148 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> | |
149 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> | |
150 <data format="html" label="${tool.name} on ${on_string}: modelsummary.qzv" name="omodelsummary"/> | |
151 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.qzv" name="oaccuracyresults"/> | |
152 <data format="qza" label="${tool.name} on ${on_string}: mazscores.qza" name="omazscores"/> | |
153 <data format="html" label="${tool.name} on ${on_string}: clustermap.qzv" name="oclustermap"/> | |
154 <data format="html" label="${tool.name} on ${on_string}: volatilityplots.qzv" name="ovolatilityplots"/> | |
155 </outputs> | |
156 <help><![CDATA[ | |
157 Microbial maturity index prediction. | |
158 #################################### | |
159 | |
160 Calculates a "microbial maturity" index from a regression model trained on | |
161 feature data to predict a given continuous metadata column, e.g., to | |
162 predict age as a function of microbiota composition. The model is trained | |
163 on a subset of control group samples, then predicts the column value for | |
164 all samples. This visualization computes maturity index z-scores to compare | |
165 relative "maturity" between each group, as described in | |
166 doi:10.1038/nature13421. This method can be used to predict between-group | |
167 differences in relative trajectory across any type of continuous metadata | |
168 gradient, e.g., intestinal microbiome development by age, microbial | |
169 succession during wine fermentation, or microbial community differences | |
170 along environmental gradients, as a function of two or more different | |
171 "treatment" groups. | |
172 | |
173 Parameters | |
174 ---------- | |
175 table : FeatureTable[Frequency] | |
176 Feature table containing all features that should be used for target | |
177 prediction. | |
178 metadata : Metadata | |
179 \ | |
180 state_column : Str | |
181 Numeric metadata column containing sampling time (state) data to use as | |
182 prediction target. | |
183 group_by : Str | |
184 Categorical metadata column to use for plotting and significance | |
185 testing between main treatment groups. | |
186 control : Str | |
187 Value of group_by to use as control group. The regression model will be | |
188 trained using only control group data, and the maturity scores of other | |
189 groups consequently will be assessed relative to this group. | |
190 individual_id_column : Str, optional | |
191 Optional metadata column containing IDs for individual subjects. Adds | |
192 individual subject (spaghetti) vectors to volatility charts if a column | |
193 name is provided. | |
194 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
195 Regression model to use for prediction. | |
196 n_estimators : Int % Range(1, None), optional | |
197 Number of trees to grow for estimation. More trees will improve | |
198 predictive accuracy up to a threshold level, but will also increase | |
199 time and memory requirements. This parameter only affects ensemble | |
200 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
201 GradientBoosting. | |
202 test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
203 Fraction of input samples to exclude from training set and use for | |
204 classifier testing. | |
205 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
206 If optimize_feature_selection is True, step is the percentage of | |
207 features to remove at each iteration. | |
208 cv : Int % Range(1, None), optional | |
209 Number of k-fold cross-validations to perform. | |
210 random_state : Int, optional | |
211 Seed used by random number generator. | |
212 parameter_tuning : Bool, optional | |
213 Automatically tune hyperparameters using random grid search. | |
214 optimize_feature_selection : Bool, optional | |
215 Automatically optimize input feature selection using recursive feature | |
216 elimination. | |
217 stratify : Bool, optional | |
218 Evenly stratify training and test data among metadata categories. If | |
219 True, all values in column must match at least two samples. | |
220 missing_samples : Str % Choices('error', 'ignore'), optional | |
221 How to handle missing samples in metadata. "error" will fail if missing | |
222 samples are detected. "ignore" will cause the feature table and | |
223 metadata to be filtered, so that only samples found in both files are | |
224 retained. | |
225 feature_count : Int % Range(0, None), optional | |
226 Filter feature table to include top N most important features. Set to | |
227 zero to include all features. | |
228 | |
229 Returns | |
230 ------- | |
231 sample_estimator : SampleEstimator[Regressor] | |
232 Trained sample estimator. | |
233 feature_importance : FeatureData[Importance] | |
234 Importance of each input feature to model accuracy. | |
235 predictions : SampleData[RegressorPredictions] | |
236 Predicted target values for each input sample. | |
237 model_summary : Visualization | |
238 Summarized parameter and (if enabled) feature selection information for | |
239 the trained estimator. | |
240 accuracy_results : Visualization | |
241 Accuracy results visualization. | |
242 maz_scores : SampleData[RegressorPredictions] | |
243 Microbiota-for-age z-score predictions. | |
244 clustermap : Visualization | |
245 Heatmap of important feature abundance at each time point in each | |
246 group. | |
247 volatility_plots : Visualization | |
248 Interactive volatility plots of MAZ and maturity scores, target | |
249 (column) predictions, and the sample metadata. | |
250 ]]></help> | |
251 <macros> | |
252 <import>qiime_citation.xml</import> | |
253 </macros> | |
254 <expand macro="qiime_citation"/> | |
255 </tool> |