comparison qiime2/qiime_sample-classifier_regress-samples-ncv.xml @ 0:370e0b6e9826 draft

Uploaded
author florianbegusch
date Wed, 17 Jul 2019 03:05:17 -0400
parents
children a025a4a89e07
comparison
equal deleted inserted replaced
-1:000000000000 0:370e0b6e9826
1 <?xml version="1.0" ?>
2 <tool id="qiime_sample-classifier_regress-samples-ncv" name="qiime sample-classifier regress-samples-ncv" version="2019.4">
3 <description> - Nested cross-validated supervised learning regressor.</description>
4 <requirements>
5 <requirement type="package" version="2019.4">qiime2</requirement>
6 </requirements>
7 <command><![CDATA[
8 qiime sample-classifier regress-samples-ncv
9
10 --i-table=$itable
11 --m-metadata-column="$mmetadatacolumn"
12
13 #if $pcv:
14 --p-cv=$pcv
15 #end if
16
17 #if str($prandomstate):
18 --p-random-state="$prandomstate"
19 #end if
20
21 #set $pnjobs = '${GALAXY_SLOTS:-4}'
22
23 #if str($pnjobs):
24 --p-n-jobs="$pnjobs"
25 #end if
26
27
28 #if $pnestimators:
29 --p-n-estimators=$pnestimators
30 #end if
31
32 #if str($pestimator) != 'None':
33 --p-estimator=$pestimator
34 #end if
35
36 #if $pstratify:
37 --p-stratify
38 #end if
39
40 #if $pparametertuning:
41 --p-parameter-tuning
42 #end if
43
44 #if str($pmissingsamples) != 'None':
45 --p-missing-samples=$pmissingsamples
46 #end if
47
48
49 #if $input_files_mmetadatafile:
50 #def list_dict_to_string(list_dict):
51 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
52 #for d in list_dict[1:]:
53 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name')
54 #end for
55 #return $file_list
56 #end def
57 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile)
58 #end if
59
60
61 --o-predictions=opredictions
62 --o-feature-importance=ofeatureimportance
63 ;
64 cp opredictions.qza $opredictions;
65 cp ofeatureimportance.qza $ofeatureimportance
66 ]]></command>
67 <inputs>
68 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/>
69 <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/>
70 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/>
71 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/>
72 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/>
73 <param label="--p-estimator: " name="pestimator" optional="True" type="select">
74 <option selected="True" value="None">Selection is Optional</option>
75 <option value="RandomForestRegressor">RandomForestRegressor</option>
76 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option>
77 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option>
78 <option value="AdaBoostRegressor">AdaBoostRegressor</option>
79 <option value="ElasticNet">ElasticNet</option>
80 <option value="Ridge">Ridge</option>
81 <option value="Lasso">Lasso</option>
82 <option value="KNeighborsRegressor">KNeighborsRegressor</option>
83 <option value="LinearSVR">LinearSVR</option>
84 <option value="SVR">SVR</option>
85 </param>
86 <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean"/>
87 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/>
88 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select">
89 <option selected="True" value="None">Selection is Optional</option>
90 <option value="error">error</option>
91 <option value="ignore">ignore</option>
92 </param>
93
94 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file">
95 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" />
96 </repeat>
97 </inputs>
98 <outputs>
99 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/>
100 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/>
101 </outputs>
102 <help><![CDATA[
103 Nested cross-validated supervised learning classifier.
104 ######################################################
105
106 Predicts a categorical sample metadata column using a supervised learning
107 classifier. Uses nested stratified k-fold cross validation for automated
108 hyperparameter optimization and sample prediction. Outputs predicted values
109 for each input sample, and relative importance of each feature for model
110 accuracy.
111
112 Parameters
113 ----------
114 table : FeatureTable[Frequency]
115 Feature table containing all features that should be used for target
116 prediction.
117 metadata : MetadataColumn[Categorical]
118 Categorical metadata column to use as prediction target.
119 cv : Int % Range(1, None), optional
120 Number of k-fold cross-validations to perform.
121 random_state : Int, optional
122 Seed used by random number generator.
123 n_estimators : Int % Range(1, None), optional
124 Number of trees to grow for estimation. More trees will improve
125 predictive accuracy up to a threshold level, but will also increase
126 time and memory requirements. This parameter only affects ensemble
127 estimators, such as Random Forest, AdaBoost, ExtraTrees, and
128 GradientBoosting.
129 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional
130 Estimator method to use for sample prediction.
131 parameter_tuning : Bool, optional
132 Automatically tune hyperparameters using random grid search.
133 missing_samples : Str % Choices('error', 'ignore'), optional
134 How to handle missing samples in metadata. "error" will fail if missing
135 samples are detected. "ignore" will cause the feature table and
136 metadata to be filtered, so that only samples found in both files are
137 retained.
138
139 Returns
140 -------
141 predictions : SampleData[ClassifierPredictions]
142 Predicted target values for each input sample.
143 feature_importance : FeatureData[Importance]
144 Importance of each input feature to model accuracy.
145 ]]></help>
146 <macros>
147 <import>qiime_citation.xml</import>
148 </macros>
149 <expand macro="qiime_citation"/>
150 </tool>