Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_longitudinal_feature-volatility.xml @ 14:a0a8d77a991c draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:51:29 +0000 |
parents | f190567fe3f6 |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_longitudinal_feature-volatility" name="qiime longitudinal feature-volatility" version="2020.8"> <description>Feature volatility analysis</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime longitudinal feature-volatility --i-table=$itable # if $input_files_mmetadatafile: # def list_dict_to_string(list_dict): # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') # for d in list_dict[1:]: # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') # end for # return $file_list # end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) # end if #if '__ob__' in str($pstatecolumn): #set $pstatecolumn_temp = $pstatecolumn.replace('__ob__', '[') #set $pstatecolumn = $pstatecolumn_temp #end if #if '__cb__' in str($pstatecolumn): #set $pstatecolumn_temp = $pstatecolumn.replace('__cb__', ']') #set $pstatecolumn = $pstatecolumn_temp #end if #if 'X' in str($pstatecolumn): #set $pstatecolumn_temp = $pstatecolumn.replace('X', '\\') #set $pstatecolumn = $pstatecolumn_temp #end if #if '__sq__' in str($pstatecolumn): #set $pstatecolumn_temp = $pstatecolumn.replace('__sq__', "'") #set $pstatecolumn = $pstatecolumn_temp #end if #if '__db__' in str($pstatecolumn): #set $pstatecolumn_temp = $pstatecolumn.replace('__db__', '"') #set $pstatecolumn = $pstatecolumn_temp #end if --p-state-column=$pstatecolumn #if '__ob__' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__ob__', '[') #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if '__cb__' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__cb__', ']') #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if 'X' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('X', '\\') #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if '__sq__' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__sq__', "'") #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if '__db__' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__db__', '"') #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if str($pindividualidcolumn): --p-individual-id-column=$pindividualidcolumn #end if --p-cv=$pcv #if str($prandomstate): --p-random-state=$prandomstate #end if --p-n-jobs=$pnjobs --p-n-estimators=$pnestimators #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if $pparametertuning: --p-parameter-tuning #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if #if str($pimportancethreshold) != 'None': --p-importance-threshold=$pimportancethreshold #end if #if str($pfeaturecount) != 'None': --p-feature-count=$pfeaturecount #end if --o-filtered-table=ofilteredtable --o-feature-importance=ofeatureimportance --o-volatility-plot=ovolatilityplot --o-accuracy-results=oaccuracyresults --o-sample-estimator=osampleestimator #if str($examples) != 'None': --examples=$examples #end if ; cp osampleestimator.qza $osampleestimator ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple Sample metadata file containing arguments will be individual-id-column. merged) [required]" name="additional_input" optional="False" type="data" /> </repeat> <param label="--p-state-column: TEXT Metadata containing collection time (state) values for each sample. Must contain exclusively numeric values. [required]" name="pstatecolumn" optional="False" type="text" /> <param label="--p-individual-id-column: TEXT Metadata column containing IDs for individual subjects. [optional]" name="pindividualidcolumn" optional="False" type="text" /> <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> <param label="--p-estimator: " name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="RandomForestRegressor">RandomForestRegressor</option> <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> <option value="AdaBoostRegressor">AdaBoostRegressor</option> <option value="ElasticNet">ElasticNet</option> <option value="Ridge">Ridge</option> <option value="Lasso">Lasso</option> <option value="KNeighborsRegressor">KNeighborsRegressor</option> <option value="LinearSVR">LinearSVR</option> <option value="SVR">SVR</option> </param> <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <param label="--p-importance-threshold: " name="pimportancethreshold" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="Float % Range(0">Float % Range(0</option> <option value="None">None</option> <option value="inclusive_start=False">inclusive_start=False</option> </param> <param label="--p-feature-count: " name="pfeaturecount" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="Int % Range(1">Int % Range(1</option> <option value="None">None</option> </param> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: filteredtable.qza" name="ofilteredtable" /> <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> <data format="html" label="${tool.name} on ${on_string}: volatilityplot.html" name="ovolatilityplot" /> <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> </outputs> <help><![CDATA[ Feature volatility analysis ############################################################### Identify features that are predictive of a numeric metadata column, state_column (e.g., time), and plot their relative frequencies across states using interactive feature volatility plots. A supervised learning regressor is used to identify important features and assess their ability to predict sample states. state_column will typically be a measure of time, but any numeric metadata column can be used. Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : Metadata Sample metadata file containing individual_id_column. state_column : Str Metadata containing collection time (state) values for each sample. Must contain exclusively numeric values. individual_id_column : Str, optional Metadata column containing IDs for individual subjects. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_jobs : Int, optional Number of jobs to run in parallel. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional Estimator method to use for sample prediction. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. importance_threshold : Float % Range(0, None, inclusive_start=False) | Str % Choices('q1', 'q2', 'q3'), optional Filter feature table to exclude any features with an importance score less than this threshold. Set to "q1", "q2", or "q3" to select the first, second, or third quartile of values. Set to "None" to disable this filter. feature_count : Int % Range(1, None) | Str % Choices('all'), optional Filter feature table to include top N most important features. Set to "all" to include all features. Returns ------- filtered_table : FeatureTable[RelativeFrequency] Feature table containing only important features. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy. volatility_plot : Visualization Interactive volatility plot visualization. accuracy_results : Visualization Accuracy results visualization. sample_estimator : SampleEstimator[Regressor] Trained sample regressor. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>